You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/Categories/Bicategory/Construction/Bimodules.agda
+9-9Lines changed: 9 additions & 9 deletions
Original file line number
Diff line number
Diff line change
@@ -22,20 +22,20 @@ private
22
22
open importCategories.NaturalTransformation.NaturalIsomorphismusing (niHelper)
23
23
open importCategories.Morphismusing (_≅_)
24
24
25
-
open importCategories.Bicategory.Construction.Bimodules.TensorproductOfBimodulesusing () renaming (Tensorproduct to infixr30 _⊗₀_)
26
-
open importCategories.Bicategory.Construction.Bimodules.TensorproductOfHomomorphismsusing () renaming (Tensorproduct to infixr30 _⊗₁_)
27
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Functorial {𝒞 = 𝒞} {localCoeq}
28
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Associator{𝒞 = 𝒞} {localCoeq} using (associator-⊗)
29
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Associator.Naturality{𝒞 = 𝒞} {localCoeq} using (α⇒-⊗-natural)
30
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor{𝒞 = 𝒞} {localCoeq} using (moduleLeft-Unitor; moduleRight-Unitor)
25
+
open importCategories.Bicategory.Construction.Bimodules.TensorproductOfBimodules{𝒞 = 𝒞} {localCoeq} using () renaming (Tensorproduct to infixr30 _⊗₀_)
26
+
open importCategories.Bicategory.Construction.Bimodules.TensorproductOfHomomorphisms{𝒞 = 𝒞} {localCoeq} using () renaming (Tensorproduct to infixr30 _⊗₁_)
27
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Functorial
28
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Associatorusing (associator-⊗)
29
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Associator.Naturalityusing (α⇒-⊗-natural)
30
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Unitorusing (moduleLeft-Unitor; moduleRight-Unitor)
31
31
openLeft-Unitorusing (unitorˡ-⊗)
32
32
openRight-Unitorusing (unitorʳ-⊗)
33
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor.Naturality {𝒞 = 𝒞} {localCoeq}
33
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor.Naturality
34
34
using (moduleLeft-Unitor-natural; moduleRight-Unitor-natural)
35
35
openLeft-Unitor-naturalusing (λ⇒-⊗-natural)
36
36
openRight-Unitor-naturalusing (ρ⇒-⊗-natural)
37
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Coherence.Pentagon{𝒞 = 𝒞} {localCoeq} using (pentagon-⊗)
38
-
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Coherence.Triangle{𝒞 = 𝒞} {localCoeq} using (triangle-⊗)
37
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Coherence.Pentagonusing (pentagon-⊗)
38
+
open importCategories.Bicategory.Construction.Bimodules.Tensorproduct.Coherence.Triangleusing (triangle-⊗)
39
39
40
40
Bimodules : Bicategory (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e (o ⊔ ℓ ⊔ e ⊔ t)
0 commit comments