Skip to content

Commit 365131e

Browse files
Merge pull request #481 from tillrampe/cat-of-bimods
Properties of the 1-Category of Bimodules
2 parents 4c5a249 + 22ef11c commit 365131e

File tree

1 file changed

+31
-34
lines changed

1 file changed

+31
-34
lines changed

src/Categories/Category/Construction/Bimodules/Properties.agda

Lines changed: 31 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -7,35 +7,32 @@ open import Categories.Bicategory.Monad
77
module Categories.Category.Construction.Bimodules.Properties
88
{o ℓ e t} {𝒞 : Bicategory o ℓ e t} {M₁ M₂ : Monad 𝒞} where
99

10-
open import Agda.Primitive
11-
12-
import Categories.Category.Construction.Bimodules
13-
open import Categories.Category
14-
15-
Bimodules : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e
16-
Bimodules = Categories.Category.Construction.Bimodules.Bimodules M₁ M₂
10+
open import Categories.Bicategory.Monad.Bimodule using (Bimodule)
11+
open import Categories.Bicategory.Monad.Bimodule.Homomorphism using (Bimodulehomomorphism)
12+
import Categories.Morphism as Mor
13+
import Categories.Morphism.Reasoning.Iso as IsoReasoning
14+
open import Categories.Category.Construction.Bimodules M₁ M₂ using (Bimodules)
15+
open import Categories.Category using (Category)
16+
import Categories.Bicategory.Extras as Bicat
1717

1818
private
19-
module Cat {o₁ ℓ₁ e₁} {C : Categories.Category.Category o₁ ℓ₁ e₁} where
20-
open Categories.Category.Category C using (Obj; _⇒_) public
21-
open import Categories.Morphism C using (IsIso; _≅_) public
22-
open import Categories.Morphism.Reasoning.Iso C using (conjugate-from) public
19+
module Bimodules where
20+
open Category Bimodules public
21+
open Mor Bimodules using (IsIso; _≅_) public
2322

24-
open Cat
25-
26-
27-
import Categories.Bicategory.Extras as Bicat
28-
open Bicat 𝒞 using (hom; _⇒₂_; _≈_; _∘ᵥ_; _◁_; _▷_; _◁ᵢ_; _▷ᵢ_)
23+
module 𝒞 where
24+
open Bicat 𝒞 public
2925

30-
open import Categories.Bicategory.Monad.Bimodule {𝒞 = 𝒞}
31-
open import Categories.Bicategory.Monad.Bimodule.Homomorphism {𝒞 = 𝒞}
26+
module HomCat {A B : 𝒞.Obj} where
27+
open Mor (𝒞.hom A B) using (IsIso; _≅_) public
28+
open IsoReasoning (𝒞.hom A B) using (conjugate-from) public
3229

33-
module Bimodulehom-isIso {B₁ B₂ : Obj {C = Bimodules}} (f : _⇒_ {C = Bimodules} B₁ B₂) where
30+
module Bimodule-Isomorphism {B₁ B₂ : Bimodules.Obj} (f : B₁ Bimodules.⇒ B₂) where
3431
open Monad using (C; T)
3532
open Bimodule using (F; actionˡ; actionʳ)
3633
open Bimodulehomomorphism f using (α; linearˡ; linearʳ)
3734

38-
αisIso⇒fisIso : IsIso {C = hom (C M₁) (C M₂)} α IsIso {C = Bimodules} f
35+
αisIso⇒fisIso : HomCat.IsIso α Bimodules.IsIso f
3936
αisIso⇒fisIso αisIso = record
4037
{ inv = record
4138
{ α = α⁻¹
@@ -44,32 +41,32 @@ module Bimodulehom-isIso {B₁ B₂ : Obj {C = Bimodules}} (f : _⇒_ {C = Bimod
4441
}
4542
; iso = record
4643
-- Cannot be delta reduced because of size issues
47-
{ isoˡ = IsIso.isoˡ αisIso
48-
; isoʳ = IsIso.isoʳ αisIso
44+
{ isoˡ = HomCat.IsIso.isoˡ αisIso
45+
; isoʳ = HomCat.IsIso.isoʳ αisIso
4946
}
5047
}
5148
where
52-
open hom.HomReasoning
49+
open 𝒞.hom.HomReasoning
5350

54-
α⁻¹ : F B₂ ⇒₂ F B₁
55-
α⁻¹ = IsIso.inv αisIso
51+
α⁻¹ : F B₂ 𝒞.⇒₂ F B₁
52+
α⁻¹ = HomCat.IsIso.inv αisIso
5653

57-
αIso : F B₁ ≅ F B₂
54+
αIso : F B₁ HomCat.≅ F B₂
5855
αIso = record
5956
{ from = α
6057
; to = α⁻¹
61-
; iso = IsIso.iso αisIso
58+
; iso = HomCat.IsIso.iso αisIso
6259
}
6360

64-
linearˡ⁻¹ : actionˡ B₁ ∘ᵥ α⁻¹ ◁ T M₁ ≈ α⁻¹ ∘ᵥ actionˡ B₂
65-
linearˡ⁻¹ = ⟺ (conjugate-from (αIso ◁ᵢ T M₁) αIso linearˡ)
61+
linearˡ⁻¹ : actionˡ B₁ 𝒞.∘ᵥ α⁻¹ 𝒞.◁ T M₁ 𝒞.≈ α⁻¹ 𝒞.∘ᵥ actionˡ B₂
62+
linearˡ⁻¹ = ⟺ (HomCat.conjugate-from (αIso 𝒞.◁ᵢ T M₁) αIso linearˡ)
6663

67-
linearʳ⁻¹ : actionʳ B₁ ∘ᵥ T M₂ ▷ α⁻¹ ≈ α⁻¹ ∘ᵥ actionʳ B₂
68-
linearʳ⁻¹ = ⟺ (conjugate-from (T M₂ ▷ᵢ αIso) αIso linearʳ)
64+
linearʳ⁻¹ : actionʳ B₁ 𝒞.∘ᵥ T M₂ 𝒞.▷ α⁻¹ 𝒞.≈ α⁻¹ 𝒞.∘ᵥ actionʳ B₂
65+
linearʳ⁻¹ = ⟺ (HomCat.conjugate-from (T M₂ 𝒞.▷ᵢ αIso) αIso linearʳ)
6966

70-
αisIso⇒Iso : IsIso {C = hom (C M₁) (C M₂)} α B₁ ≅ B₂
67+
αisIso⇒Iso : HomCat.IsIso α B₁ Bimodules.≅ B₂
7168
αisIso⇒Iso αisIso = record
7269
{ from = f
73-
; to = IsIso.inv (αisIso⇒fisIso αisIso)
74-
; iso = IsIso.iso (αisIso⇒fisIso αisIso)
70+
; to = Bimodules.IsIso.inv (αisIso⇒fisIso αisIso)
71+
; iso = Bimodules.IsIso.iso (αisIso⇒fisIso αisIso)
7572
}

0 commit comments

Comments
 (0)