@@ -7,35 +7,32 @@ open import Categories.Bicategory.Monad
77module Categories.Category.Construction.Bimodules.Properties
88 {o ℓ e t} {𝒞 : Bicategory o ℓ e t} {M₁ M₂ : Monad 𝒞} where
99
10- open import Agda.Primitive
11-
12- import Categories.Category.Construction.Bimodules
13- open import Categories.Category
14-
15- Bimodules : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e
16- Bimodules = Categories.Category.Construction.Bimodules.Bimodules M₁ M₂
10+ open import Categories.Bicategory.Monad.Bimodule using (Bimodule)
11+ open import Categories.Bicategory.Monad.Bimodule.Homomorphism using (Bimodulehomomorphism)
12+ import Categories.Morphism as Mor
13+ import Categories.Morphism.Reasoning.Iso as IsoReasoning
14+ open import Categories.Category.Construction.Bimodules M₁ M₂ using (Bimodules)
15+ open import Categories. Category using (Category)
16+ import Categories.Bicategory.Extras as Bicat
1717
1818private
19- module Cat {o₁ ℓ₁ e₁} {C : Categories.Category.Category o₁ ℓ₁ e₁} where
20- open Categories.Category.Category C using (Obj; _⇒_) public
21- open import Categories.Morphism C using (IsIso; _≅_) public
22- open import Categories.Morphism.Reasoning.Iso C using (conjugate-from) public
19+ module Bimodules where
20+ open Category Bimodules public
21+ open Mor Bimodules using (IsIso; _≅_) public
2322
24- open Cat
25-
26-
27- import Categories.Bicategory.Extras as Bicat
28- open Bicat 𝒞 using (hom; _⇒₂_; _≈_; _∘ᵥ_; _◁_; _▷_; _◁ᵢ_; _▷ᵢ_)
23+ module 𝒞 where
24+ open Bicat 𝒞 public
2925
30- open import Categories.Bicategory.Monad.Bimodule {𝒞 = 𝒞}
31- open import Categories.Bicategory.Monad.Bimodule.Homomorphism {𝒞 = 𝒞}
26+ module HomCat {A B : 𝒞.Obj} where
27+ open Mor (𝒞.hom A B) using (IsIso; _≅_) public
28+ open IsoReasoning (𝒞.hom A B) using (conjugate-from) public
3229
33- module Bimodulehom-isIso {B₁ B₂ : Obj {C = Bimodules}} (f : _⇒_ {C = Bimodules} B₁ B₂) where
30+ module Bimodule-Isomorphism {B₁ B₂ : Bimodules.Obj} (f : B₁ Bimodules.⇒ B₂) where
3431 open Monad using (C; T)
3532 open Bimodule using (F; actionˡ; actionʳ)
3633 open Bimodulehomomorphism f using (α; linearˡ; linearʳ)
3734
38- αisIso⇒fisIso : IsIso {C = hom (C M₁) (C M₂)} α → IsIso {C = Bimodules} f
35+ αisIso⇒fisIso : HomCat. IsIso α → Bimodules.IsIso f
3936 αisIso⇒fisIso αisIso = record
4037 { inv = record
4138 { α = α⁻¹
@@ -44,32 +41,32 @@ module Bimodulehom-isIso {B₁ B₂ : Obj {C = Bimodules}} (f : _⇒_ {C = Bimod
4441 }
4542 ; iso = record
4643 -- Cannot be delta reduced because of size issues
47- { isoˡ = IsIso.isoˡ αisIso
48- ; isoʳ = IsIso.isoʳ αisIso
44+ { isoˡ = HomCat. IsIso.isoˡ αisIso
45+ ; isoʳ = HomCat. IsIso.isoʳ αisIso
4946 }
5047 }
5148 where
52- open hom.HomReasoning
49+ open 𝒞. hom.HomReasoning
5350
54- α⁻¹ : F B₂ ⇒₂ F B₁
55- α⁻¹ = IsIso.inv αisIso
51+ α⁻¹ : F B₂ 𝒞. ⇒₂ F B₁
52+ α⁻¹ = HomCat. IsIso.inv αisIso
5653
57- αIso : F B₁ ≅ F B₂
54+ αIso : F B₁ HomCat. ≅ F B₂
5855 αIso = record
5956 { from = α
6057 ; to = α⁻¹
61- ; iso = IsIso.iso αisIso
58+ ; iso = HomCat. IsIso.iso αisIso
6259 }
6360
64- linearˡ⁻¹ : actionˡ B₁ ∘ᵥ α⁻¹ ◁ T M₁ ≈ α⁻¹ ∘ᵥ actionˡ B₂
65- linearˡ⁻¹ = ⟺ (conjugate-from (αIso ◁ᵢ T M₁) αIso linearˡ)
61+ linearˡ⁻¹ : actionˡ B₁ 𝒞. ∘ᵥ α⁻¹ 𝒞. ◁ T M₁ 𝒞. ≈ α⁻¹ 𝒞. ∘ᵥ actionˡ B₂
62+ linearˡ⁻¹ = ⟺ (HomCat. conjugate-from (αIso 𝒞. ◁ᵢ T M₁) αIso linearˡ)
6663
67- linearʳ⁻¹ : actionʳ B₁ ∘ᵥ T M₂ ▷ α⁻¹ ≈ α⁻¹ ∘ᵥ actionʳ B₂
68- linearʳ⁻¹ = ⟺ (conjugate-from (T M₂ ▷ᵢ αIso) αIso linearʳ)
64+ linearʳ⁻¹ : actionʳ B₁ 𝒞. ∘ᵥ T M₂ 𝒞. ▷ α⁻¹ 𝒞. ≈ α⁻¹ 𝒞. ∘ᵥ actionʳ B₂
65+ linearʳ⁻¹ = ⟺ (HomCat. conjugate-from (T M₂ 𝒞. ▷ᵢ αIso) αIso linearʳ)
6966
70- αisIso⇒Iso : IsIso {C = hom (C M₁) (C M₂)} α → B₁ ≅ B₂
67+ αisIso⇒Iso : HomCat. IsIso α → B₁ Bimodules. ≅ B₂
7168 αisIso⇒Iso αisIso = record
7269 { from = f
73- ; to = IsIso.inv (αisIso⇒fisIso αisIso)
74- ; iso = IsIso.iso (αisIso⇒fisIso αisIso)
70+ ; to = Bimodules. IsIso.inv (αisIso⇒fisIso αisIso)
71+ ; iso = Bimodules. IsIso.iso (αisIso⇒fisIso αisIso)
7572 }
0 commit comments