Skip to content

Commit 49f2dbb

Browse files
Merge pull request #439 from Taneb/slice-functor-rename
Rename slice functors
2 parents ac0d9d2 + 07581f7 commit 49f2dbb

File tree

5 files changed

+14
-48
lines changed

5 files changed

+14
-48
lines changed

src/Categories/Adjoint/Instance/BaseChange.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ module Categories.Adjoint.Instance.BaseChange {o ℓ e} (C : Category o ℓ e) w
66

77
open import Categories.Adjoint using (_⊣_)
88
open import Categories.Adjoint.Compose using (_∘⊣_)
9-
open import Categories.Adjoint.Instance.Slice using (Forgetful⊣Free)
9+
open import Categories.Adjoint.Instance.Slice using (TotalSpace⊣ConstantFamily)
1010
open import Categories.Category.Slice C using (Slice)
1111
open import Categories.Category.Slice.Properties C using (pullback⇒product; slice-slice≃slice)
1212
open import Categories.Category.Equivalence.Properties using (module C≅D)
@@ -18,4 +18,4 @@ open Category C
1818
module _ {A B : Obj} (f : B ⇒ A) (pullback : {C} {h : C ⇒ A} Pullback f h) where
1919

2020
!⊣* : BaseChange! f ⊣ BaseChange* f pullback
21-
!⊣* = C≅D.L⊣R (slice-slice≃slice f) ∘⊣ Forgetful⊣Free (Slice A) (pullback⇒product pullback)
21+
!⊣* = C≅D.L⊣R (slice-slice≃slice f) ∘⊣ TotalSpace⊣ConstantFamily (Slice A) (pullback⇒product pullback)

src/Categories/Adjoint/Instance/Slice.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ module Categories.Adjoint.Instance.Slice {o ℓ e} (C : Category o ℓ e) where
66

77
open import Categories.Adjoint using (_⊣_)
88
open import Categories.Category.Slice C using (SliceObj; Slice⇒; slicearr)
9-
open import Categories.Functor.Slice C using (Forgetful; Free)
9+
open import Categories.Functor.Slice C using (TotalSpace; ConstantFamily)
1010
open import Categories.NaturalTransformation using (ntHelper)
1111
open import Categories.Object.Product C
1212

@@ -22,8 +22,8 @@ module _ {A : Obj} (product : ∀ {X} → Product A X) where
2222
module product {X} = Product (product {X})
2323
open product
2424

25-
Forgetful⊣Free : ForgetfulFree product
26-
Forgetful⊣Free = record
25+
TotalSpace⊣ConstantFamily : TotalSpaceConstantFamily product
26+
TotalSpace⊣ConstantFamily = record
2727
{ unit = ntHelper record
2828
{ η = λ _ slicearr project₁
2929
; commute = λ {X} {Y} f begin

src/Categories/Category/CartesianClosed/Locally/Properties.agda

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@ open import Categories.Category.Slice
1111
open import Categories.Category.Slice.Properties
1212
open import Categories.Functor
1313
open import Categories.Functor.Slice
14+
open import Categories.Functor.Slice.BaseChange
1415

1516
private
1617
module C = Category C
@@ -37,7 +38,7 @@ module _ (f : A ⇒ B) where
3738
J = slice⇒slice-slice C f
3839

3940
I : Functor (Slice C/B (fObj ^ fObj)) C/B
40-
I = pullback-functorial C/B slice-pullbacks i
41+
I = TotalSpace C/B ∘F BaseChange* C/B i (slice-pullbacks i _)
4142

4243
K : Functor C/B/f (Slice C/B (fObj ^ fObj))
4344
K = Base-F C/B (fObj ⇨-)

src/Categories/Functor/Slice.agda

Lines changed: 4 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -36,59 +36,24 @@ module _ {A : Obj} where
3636

3737
open S C
3838

39-
Forgetful : Functor (Slice A) C
40-
Forgetful = record
39+
TotalSpace : Functor (Slice A) C
40+
TotalSpace = record
4141
{ F₀ = Y
4242
; F₁ = h
4343
; identity = refl
4444
; homomorphism = refl
4545
; F-resp-≈ = id→
4646
}
4747

48-
module _ (pullback : {X} {Y} {Z} (h : X ⇒ Z) (i : Y ⇒ Z) Pullback h i) where
49-
private
50-
module pullbacks {X Y Z} h i = Pullback (pullback {X} {Y} {Z} h i)
51-
open pullbacks using (p₂; p₂∘universal≈h₂; unique; unique-diagram; p₁∘universal≈h₁)
52-
53-
pullback-functorial : {B} (f : B ⇒ A) Functor (Slice A) C
54-
pullback-functorial f = record
55-
{ F₀ = λ X p.P X
56-
; F₁ = λ f p⇒ _ _ f
57-
; identity = λ {X} sym (p.unique X id-comm id-comm)
58-
; homomorphism = λ {_ Y Z}
59-
p.unique-diagram Z (p.p₁∘universal≈h₁ Z ○ ⟺ identityˡ ○ ⟺ (pullʳ (p.p₁∘universal≈h₁ Y)) ○ ⟺ (pullˡ (p.p₁∘universal≈h₁ Z)))
60-
(p.p₂∘universal≈h₂ Z ○ assoc ○ ⟺ (pullʳ (p.p₂∘universal≈h₂ Y)) ○ ⟺ (pullˡ (p.p₂∘universal≈h₂ Z)))
61-
; F-resp-≈ = λ {_ B} {h i} eq
62-
p.unique-diagram B (p.p₁∘universal≈h₁ B ○ ⟺ (p.p₁∘universal≈h₁ B))
63-
(p.p₂∘universal≈h₂ B ○ ∘-resp-≈ˡ eq ○ ⟺ (p.p₂∘universal≈h₂ B))
64-
}
65-
where p : X Pullback f (arr X)
66-
p X = pullback f (arr X)
67-
module p X = Pullback (p X)
68-
69-
p⇒ : X Y (g : Slice⇒ X Y) p.P X ⇒ p.P Y
70-
p⇒ X Y g = Pbs.Pullback⇒.pbarr pX⇒pY
71-
where pX : Pbs.PullbackObj C A
72-
pX = record { pullback = p X }
73-
pY : Pbs.PullbackObj C A
74-
pY = record { pullback = p Y }
75-
pX⇒pY : Pbs.Pullback⇒ C A pX pY
76-
pX⇒pY = record
77-
{ mor₁ = Category.id C
78-
; mor₂ = h g
79-
; commute₁ = identityʳ
80-
; commute₂ = △ g
81-
}
82-
8348
module _ (product : {X : Obj} Product A X) where
8449

8550
private
8651
module product {X} = Product (product {X})
8752
open product
8853

8954
-- this is adapted from proposition 1.33 of Aspects of Topoi (Freyd, 1972)
90-
Free : Functor C (Slice A)
91-
Free = record
55+
ConstantFamily : Functor C (Slice A)
56+
ConstantFamily = record
9257
{ F₀ = λ _ sliceobj π₁
9358
; F₁ = λ f slicearr ([ product ⇒ product ]π₁∘× ○ identityˡ)
9459
; identity = id×id product

src/Categories/Functor/Slice/BaseChange.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ module Categories.Functor.Slice.BaseChange {o ℓ e} (C : Category o ℓ e) wher
77
open import Categories.Category.Slice C using (Slice)
88
open import Categories.Category.Slice.Properties C using (pullback⇒product; slice-slice⇒slice; slice⇒slice-slice)
99
open import Categories.Functor using (Functor; _∘F_)
10-
open import Categories.Functor.Slice using (Forgetful; Free)
10+
open import Categories.Functor.Slice using (TotalSpace; ConstantFamily)
1111
open import Categories.Diagram.Pullback C using (Pullback)
1212

1313
open Category C
@@ -16,9 +16,9 @@ module _ {A B : Obj} (f : B ⇒ A) where
1616

1717
-- Any morphism induces a functor between slices.
1818
BaseChange! : Functor (Slice B) (Slice A)
19-
BaseChange! = Forgetful (Slice A) ∘F slice⇒slice-slice f
19+
BaseChange! = TotalSpace (Slice A) ∘F slice⇒slice-slice f
2020

2121
-- Any morphism which admits pullbacks induces a functor the other way between slices.
2222
-- This is adjoint to BaseChange!: see Categories.Adjoint.Instance.BaseChange.
2323
BaseChange* : ( {C} {h : C ⇒ A} Pullback f h) Functor (Slice A) (Slice B)
24-
BaseChange* pullback = slice-slice⇒slice f ∘F Free (Slice A) (pullback⇒product pullback)
24+
BaseChange* pullback = slice-slice⇒slice f ∘F ConstantFamily (Slice A) (pullback⇒product pullback)

0 commit comments

Comments
 (0)