Skip to content

Commit 5bc227e

Browse files
committed
Fixed formatting and made modules private as requested
1 parent f6c896d commit 5bc227e

File tree

1 file changed

+33
-20
lines changed

1 file changed

+33
-20
lines changed

src/Categories/Bicategory/Object/Product.agda

Lines changed: 33 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -48,9 +48,10 @@ record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e ⊔ t) where
4848
η₂ : {Γ}{p p'}(ϕ : hom Γ A×B [ p , p' ])
4949
Along (η₁ _) , (η₁ _) [ ϕ ≈ ⟨ πa ▷ ϕ , πb ▷ ϕ ⟩₂ ]
5050

51-
module β₁a {Γ} f g = _≅_ (β₁a {Γ} f g)
52-
module β₁b {Γ} f g = _≅_ (β₁b {Γ} f g)
53-
module η₁ {Γ} p = _≅_ (η₁ {Γ} p)
51+
private
52+
module β₁a {Γ} f g = _≅_ (β₁a {Γ} f g)
53+
module β₁b {Γ} f g = _≅_ (β₁b {Γ} f g)
54+
module η₁ {Γ} p = _≅_ (η₁ {Γ} p)
5455

5556
unique₂ : {Γ}{p p'}{ϕ ψ : hom Γ A×B [ p , p' ]} πa ▷ ϕ ≈ πa ▷ ψ πb ▷ ϕ ≈ πb ▷ ψ ϕ ≈ ψ
5657
unique₂ {ϕ = ϕ}{ψ} ϕa≈ψa ϕb≈ψb = begin
@@ -63,23 +64,29 @@ record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e ⊔ t) where
6364
⟨-,-⟩ = record
6465
{ F₀ = uncurry′ ⟨_,_⟩₁
6566
; F₁ = uncurry′ ⟨_,_⟩₂
66-
; identity = unique₂ (MR′.switch-fromtoˡ (β₁a _ _) (β₂a id₂ id₂) ○ hom.∘-resp-≈ʳ identity₂ˡ
67-
○ β₁a.isoˡ _ _ ○ ⟺ ⊚.identity)
68-
(MR′.switch-fromtoˡ (β₁b _ _) (β₂b id₂ id₂) ○ hom.∘-resp-≈ʳ identity₂ˡ
69-
○ β₁b.isoˡ _ _ ○ ⟺ ⊚.identity)
70-
; homomorphism = λ{_ _ _ (αa , αb) (βa , βb)}
71-
unique₂ (MR′.switch-fromtoˡ (β₁a _ _) (β₂a (βa ∘ᵥ αa) (βb ∘ᵥ αb))
72-
○ MR′.pushʳ (MR′.extendˡ (MR′.insertˡ (β₁a.isoʳ _ _)))
73-
○ ⟺ (MR′.switch-fromtoˡ (β₁a _ _) (β₂a βa βb)
74-
⟩∘⟨ MR′.switch-fromtoˡ (β₁a _ _) (β₂a αa αb))
75-
○ ∘ᵥ-distr-▷)
76-
(MR′.switch-fromtoˡ (β₁b _ _) (β₂b (βa ∘ᵥ αa) (βb ∘ᵥ αb))
77-
○ MR′.pushʳ (MR′.extendˡ (MR′.insertˡ (β₁b.isoʳ _ _)))
78-
○ ⟺ (MR′.switch-fromtoˡ (β₁b _ _) (β₂b βa βb)
79-
⟩∘⟨ MR′.switch-fromtoˡ (β₁b _ _) (β₂b αa αb))
80-
○ ∘ᵥ-distr-▷)
67+
; identity = ⟨⟩-identity
68+
; homomorphism = ⟨⟩-homomorphism
8169
; F-resp-≈ = uncurry′ ⟨⟩-resp-≈
8270
}
71+
where
72+
⟨⟩-identity : {Γ}{f : Γ ⇒₁ A}{g : Γ ⇒₁ B} ⟨ id₂ {f = f} , id₂ {f = g} ⟩₂ ≈ id₂
73+
⟨⟩-identity = unique₂ (MR′.switch-fromtoˡ (β₁a _ _) (β₂a id₂ id₂) ○ hom.∘-resp-≈ʳ identity₂ˡ
74+
○ β₁a.isoˡ _ _ ○ ⟺ ⊚.identity)
75+
(MR′.switch-fromtoˡ (β₁b _ _) (β₂b id₂ id₂) ○ hom.∘-resp-≈ʳ identity₂ˡ
76+
○ β₁b.isoˡ _ _ ○ ⟺ ⊚.identity)
77+
⟨⟩-homomorphism : {Γ}{fa ga ha : Γ ⇒₁ A}{fb gb hb : Γ ⇒₁ B}
78+
{αa : fa ⇒₂ ga}{αb : fb ⇒₂ gb}{βa : ga ⇒₂ ha}{βb : gb ⇒₂ hb}
79+
⟨ βa ∘ᵥ αa , βb ∘ᵥ αb ⟩₂ ≈ ⟨ βa , βb ⟩₂ ∘ᵥ ⟨ αa , αb ⟩₂
80+
⟨⟩-homomorphism {αa = αa}{αb}{βa}{βb} = unique₂ (MR′.switch-fromtoˡ (β₁a _ _) (β₂a (βa ∘ᵥ αa) (βb ∘ᵥ αb))
81+
○ MR′.pushʳ (MR′.extendˡ (MR′.insertˡ (β₁a.isoʳ _ _)))
82+
○ ⟺ (MR′.switch-fromtoˡ (β₁a _ _) (β₂a βa βb)
83+
⟩∘⟨ MR′.switch-fromtoˡ (β₁a _ _) (β₂a αa αb))
84+
○ ∘ᵥ-distr-▷)
85+
(MR′.switch-fromtoˡ (β₁b _ _) (β₂b (βa ∘ᵥ αa) (βb ∘ᵥ αb))
86+
○ MR′.pushʳ (MR′.extendˡ (MR′.insertˡ (β₁b.isoʳ _ _)))
87+
○ ⟺ (MR′.switch-fromtoˡ (β₁b _ _) (β₂b βa βb)
88+
⟩∘⟨ MR′.switch-fromtoˡ (β₁b _ _) (β₂b αa αb))
89+
○ ∘ᵥ-distr-▷)
8390

8491
βa : {Γ} πa ⊚- ∘F ⟨-,-⟩ {Γ} ≃ πˡ
8592
βa = pointwise-iso (uncurry β₁a) (uncurry β₂a)
@@ -94,5 +101,11 @@ record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e ⊔ t) where
94101
η = pointwise-iso η₁ η₂
95102

96103
𝒞[Γ,A×B]≅𝒞[Γ,A]×𝒞[Γ,B] : {Γ} StrongEquivalence (hom Γ A×B) (CatProduct (hom Γ A) (hom Γ B))
97-
𝒞[Γ,A×B]≅𝒞[Γ,A]×𝒞[Γ,B] = record { F = πa ⊚- ※ πb ⊚- ; G = ⟨-,-⟩
98-
; weak-inverse = record { F∘G≈id = β ; G∘F≈id = sym η } }
104+
𝒞[Γ,A×B]≅𝒞[Γ,A]×𝒞[Γ,B] = record
105+
{ F = πa ⊚- ※ πb ⊚-
106+
; G = ⟨-,-⟩
107+
; weak-inverse = record
108+
{ F∘G≈id = β
109+
; G∘F≈id = sym η
110+
}
111+
}

0 commit comments

Comments
 (0)