@@ -45,41 +45,6 @@ module _ {A : Obj} where
4545 ; F-resp-≈ = id→
4646 }
4747
48- module _ (pullback : ∀ {X} {Y} {Z} (h : X ⇒ Z) (i : Y ⇒ Z) → Pullback h i) where
49- private
50- module pullbacks {X Y Z} h i = Pullback (pullback {X} {Y} {Z} h i)
51- open pullbacks using (p₂; p₂∘universal≈h₂; unique; unique-diagram; p₁∘universal≈h₁)
52-
53- pullback-functorial : ∀ {B} (f : B ⇒ A) → Functor (Slice A) C
54- pullback-functorial f = record
55- { F₀ = λ X → p.P X
56- ; F₁ = λ f → p⇒ _ _ f
57- ; identity = λ {X} → sym (p.unique X id-comm id-comm)
58- ; homomorphism = λ {_ Y Z} →
59- p.unique-diagram Z (p.p₁∘universal≈h₁ Z ○ ⟺ identityˡ ○ ⟺ (pullʳ (p.p₁∘universal≈h₁ Y)) ○ ⟺ (pullˡ (p.p₁∘universal≈h₁ Z)))
60- (p.p₂∘universal≈h₂ Z ○ assoc ○ ⟺ (pullʳ (p.p₂∘universal≈h₂ Y)) ○ ⟺ (pullˡ (p.p₂∘universal≈h₂ Z)))
61- ; F-resp-≈ = λ {_ B} {h i} eq →
62- p.unique-diagram B (p.p₁∘universal≈h₁ B ○ ⟺ (p.p₁∘universal≈h₁ B))
63- (p.p₂∘universal≈h₂ B ○ ∘-resp-≈ˡ eq ○ ⟺ (p.p₂∘universal≈h₂ B))
64- }
65- where p : ∀ X → Pullback f (arr X)
66- p X = pullback f (arr X)
67- module p X = Pullback (p X)
68-
69- p⇒ : ∀ X Y (g : Slice⇒ X Y) → p.P X ⇒ p.P Y
70- p⇒ X Y g = Pbs.Pullback⇒.pbarr pX⇒pY
71- where pX : Pbs.PullbackObj C A
72- pX = record { pullback = p X }
73- pY : Pbs.PullbackObj C A
74- pY = record { pullback = p Y }
75- pX⇒pY : Pbs.Pullback⇒ C A pX pY
76- pX⇒pY = record
77- { mor₁ = Category.id C
78- ; mor₂ = h g
79- ; commute₁ = identityʳ
80- ; commute₂ = △ g
81- }
82-
8348 module _ (product : {X : Obj} → Product A X) where
8449
8550 private
0 commit comments