File tree Expand file tree Collapse file tree 3 files changed +16
-16
lines changed
Category/Complete/Properties Expand file tree Collapse file tree 3 files changed +16
-16
lines changed Original file line number Diff line number Diff line change @@ -75,17 +75,17 @@ module _ (prods : AllProductsOf (o′ ⊔ ℓ′)) (equalizer : ∀ {A B} (f g :
7575 K⇒ : K.N C.⇒ src
7676 K⇒ = OP.⟨ (λ j → K.ψ (lower j)) ⟩
7777
78- Keq : ( i : ∃₂ J._⇒_) → ϕ⇒ i C.∘ K⇒ C.≈ ψ⇒ i C.∘ K⇒
79- Keq i@(A , B , f) = begin
80- ϕ⇒ i C.∘ K⇒ ≈⟨ OP.commute ⟩
81- K.ψ B ≈˘⟨ K.commute _ ⟩
82- F₁ f C.∘ K.ψ A ≈˘⟨ pullʳ OP.commute ⟩
83- ψ⇒ i C.∘ K⇒ ∎
78+ Keq : { i : ∃₂ J._⇒_} → ϕ⇒ i C.∘ K⇒ C.≈ ψ⇒ i C.∘ K⇒
79+ Keq = begin
80+ _ C.∘ K⇒ ≈⟨ OP.commute ⟩
81+ K.ψ _ ≈˘⟨ K.commute _ ⟩
82+ F₁ _ C.∘ K.ψ _ ≈˘⟨ pullʳ OP.commute ⟩
83+ _ C.∘ K⇒ ∎
8484
8585 !-eq : ϕ C.∘ K⇒ C.≈ ψ C.∘ K⇒
8686 !-eq = begin
8787 ϕ C.∘ K⇒ ≈⟨ MP.⟨⟩∘ _ _ ⟩
88- MP.⟨ (λ i → ϕ⇒ i C.∘ K⇒) ⟩ ≈⟨ MP.⟨⟩-cong _ _ Keq ⟩
88+ MP.⟨ (λ i → ϕ⇒ i C.∘ K⇒) ⟩ ≈⟨ MP.⟨⟩-cong Keq ⟩
8989 MP.⟨ (λ i → ψ⇒ i C.∘ K⇒) ⟩ ≈˘⟨ MP.⟨⟩∘ _ _ ⟩
9090 ψ C.∘ K⇒ ∎
9191
@@ -102,7 +102,7 @@ module _ (prods : AllProductsOf (o′ ⊔ ℓ′)) (equalizer : ∀ {A B} (f g :
102102 !-unique f = ⟺ (eq.unique eq)
103103 where module f = Co.Cone⇒ F f
104104 eq : K⇒ C.≈ eq.arr C.∘ f.arr
105- eq = OP.unique′ _ _ $ begin
105+ eq = OP.unique′ $ begin
106106 OP.π _ C.∘ K⇒ ≈⟨ OP.commute ⟩
107107 K.ψ _ ≈˘⟨ f.commute ⟩
108108 (OP.π _ C.∘ eq.arr) C.∘ f.arr ≈⟨ C.assoc ⟩
Original file line number Diff line number Diff line change @@ -27,11 +27,11 @@ record IndexedCoproductOf {i} {I : Set i} (P : I → Obj) : Set (i ⊔ o ⊔ e
2727 ∘[] : ∀ {Y Z} (f : ∀ i → P i ⇒ Y) (g : Y ⇒ Z) → g ∘ [ f ] ≈ [ (λ i → g ∘ f i) ]
2828 ∘[] f g = sym (unique (pullʳ commute))
2929
30- []-cong : ∀ {Y} ( f g : ∀ i → P i ⇒ Y) → (∀ i → f i ≈ g i) → [ f ] ≈ [ g ]
31- []-cong f g eq = unique (trans commute (sym (eq _) ))
30+ []-cong : ∀ {Y} { f g : ∀ i → P i ⇒ Y} → (∀ {i} → f i ≈ g i) → [ f ] ≈ [ g ]
31+ []-cong eq = unique (trans commute (sym eq ))
3232
33- unique′ : ∀ {Y} ( h h′ : X ⇒ Y) → (∀ {i} → h′ ∘ ι i ≈ h ∘ ι i) → h′ ≈ h
34- unique′ h h′ f = trans (sym (unique f)) (η _)
33+ unique′ : ∀ {Y} { h h′ : X ⇒ Y} → (∀ {i} → h′ ∘ ι i ≈ h ∘ ι i) → h′ ≈ h
34+ unique′ f = trans (sym (unique f)) (η _)
3535
3636AllCoproductsOf : ∀ i → Set (o ⊔ ℓ ⊔ e ⊔ suc i)
3737AllCoproductsOf i = ∀ {I : Set i} (P : I → Obj) → IndexedCoproductOf P
Original file line number Diff line number Diff line change @@ -31,11 +31,11 @@ record IndexedProductOf {i} {I : Set i} (P : I → Obj) : Set (i ⊔ o ⊔ e ⊔
3131 ⟨⟩∘ : ∀ {Y Z} (f : ∀ i → Y ⇒ P i) (g : Z ⇒ Y) → ⟨ f ⟩ ∘ g ≈ ⟨ (λ i → f i ∘ g) ⟩
3232 ⟨⟩∘ f g = ⟺ (unique (pullˡ commute))
3333
34- ⟨⟩-cong : ∀ {Y} ( f g : ∀ i → Y ⇒ P i) → (eq : ∀ i → f i ≈ g i) → ⟨ f ⟩ ≈ ⟨ g ⟩
35- ⟨⟩-cong f g eq = unique (trans commute (⟺ (eq _) ))
34+ ⟨⟩-cong : ∀ {Y} { f g : ∀ i → Y ⇒ P i} → (eq : ∀ {i} → f i ≈ g i) → ⟨ f ⟩ ≈ ⟨ g ⟩
35+ ⟨⟩-cong eq = unique (trans commute (⟺ eq ))
3636
37- unique′ : ∀ {Y} ( h h′ : Y ⇒ X) → (∀ {i} → π i ∘ h′ ≈ π i ∘ h) → h′ ≈ h
38- unique′ h h′ f = trans (⟺ (unique f)) (η _)
37+ unique′ : ∀ {Y} { h h′ : Y ⇒ X} → (∀ {i} → π i ∘ h′ ≈ π i ∘ h) → h′ ≈ h
38+ unique′ f = trans (⟺ (unique f)) (η _)
3939
4040AllProductsOf : ∀ i → Set (o ⊔ ℓ ⊔ e ⊔ suc i)
4141AllProductsOf i = ∀ {I : Set i} (P : I → Obj) → IndexedProductOf P
You can’t perform that action at this time.
0 commit comments