Skip to content

Commit 818edf3

Browse files
committed
Implicits in cong and unique-prime
1 parent 03d4682 commit 818edf3

File tree

3 files changed

+16
-16
lines changed

3 files changed

+16
-16
lines changed

src/Categories/Category/Complete/Properties/Construction.agda

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -75,17 +75,17 @@ module _ (prods : AllProductsOf (o′ ⊔ ℓ′)) (equalizer : ∀ {A B} (f g :
7575
K⇒ : K.N C.⇒ src
7676
K⇒ = OP.⟨ (λ j K.ψ (lower j)) ⟩
7777

78-
Keq : (i : ∃₂ J._⇒_) ϕ⇒ i C.∘ K⇒ C.≈ ψ⇒ i C.∘ K⇒
79-
Keq i@(A , B , f) = begin
80-
ϕ⇒ i C.∘ K⇒ ≈⟨ OP.commute ⟩
81-
K.ψ B ≈˘⟨ K.commute _ ⟩
82-
F₁ f C.∘ K.ψ A ≈˘⟨ pullʳ OP.commute ⟩
83-
ψ⇒ i C.∘ K⇒ ∎
78+
Keq : {i : ∃₂ J._⇒_} ϕ⇒ i C.∘ K⇒ C.≈ ψ⇒ i C.∘ K⇒
79+
Keq = begin
80+
_ C.∘ K⇒ ≈⟨ OP.commute ⟩
81+
K.ψ _ ≈˘⟨ K.commute _ ⟩
82+
F₁ _ C.∘ K.ψ _ ≈˘⟨ pullʳ OP.commute ⟩
83+
_ C.∘ K⇒
8484

8585
!-eq : ϕ C.∘ K⇒ C.≈ ψ C.∘ K⇒
8686
!-eq = begin
8787
ϕ C.∘ K⇒ ≈⟨ MP.⟨⟩∘ _ _ ⟩
88-
MP.⟨ (λ i ϕ⇒ i C.∘ K⇒) ⟩ ≈⟨ MP.⟨⟩-cong _ _ Keq ⟩
88+
MP.⟨ (λ i ϕ⇒ i C.∘ K⇒) ⟩ ≈⟨ MP.⟨⟩-cong Keq ⟩
8989
MP.⟨ (λ i ψ⇒ i C.∘ K⇒) ⟩ ≈˘⟨ MP.⟨⟩∘ _ _ ⟩
9090
ψ C.∘ K⇒ ∎
9191

@@ -102,7 +102,7 @@ module _ (prods : AllProductsOf (o′ ⊔ ℓ′)) (equalizer : ∀ {A B} (f g :
102102
!-unique f = ⟺ (eq.unique eq)
103103
where module f = Co.Cone⇒ F f
104104
eq : K⇒ C.≈ eq.arr C.∘ f.arr
105-
eq = OP.unique′ _ _ $ begin
105+
eq = OP.unique′ $ begin
106106
OP.π _ C.∘ K⇒ ≈⟨ OP.commute ⟩
107107
K.ψ _ ≈˘⟨ f.commute ⟩
108108
(OP.π _ C.∘ eq.arr) C.∘ f.arr ≈⟨ C.assoc ⟩

src/Categories/Object/Coproduct/Indexed.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -27,11 +27,11 @@ record IndexedCoproductOf {i} {I : Set i} (P : I → Obj) : Set (i ⊔ o ⊔ e
2727
∘[] : {Y Z} (f : i P i ⇒ Y) (g : Y ⇒ Z) g ∘ [ f ] ≈ [ (λ i g ∘ f i) ]
2828
∘[] f g = sym (unique (pullʳ commute))
2929

30-
[]-cong : {Y} (f g : i P i ⇒ Y) ( i f i ≈ g i) [ f ] ≈ [ g ]
31-
[]-cong f g eq = unique (trans commute (sym (eq _)))
30+
[]-cong : {Y} {f g : i P i ⇒ Y} ( {i} f i ≈ g i) [ f ] ≈ [ g ]
31+
[]-cong eq = unique (trans commute (sym eq))
3232

33-
unique′ : {Y} (h h′ : X ⇒ Y) ( {i} h′ ∘ ι i ≈ h ∘ ι i) h′ ≈ h
34-
unique′ h h′ f = trans (sym (unique f)) (η _)
33+
unique′ : {Y} {h h′ : X ⇒ Y} ( {i} h′ ∘ ι i ≈ h ∘ ι i) h′ ≈ h
34+
unique′ f = trans (sym (unique f)) (η _)
3535

3636
AllCoproductsOf : i Set (o ⊔ ℓ ⊔ e ⊔ suc i)
3737
AllCoproductsOf i = {I : Set i} (P : I Obj) IndexedCoproductOf P

src/Categories/Object/Product/Indexed.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -31,11 +31,11 @@ record IndexedProductOf {i} {I : Set i} (P : I → Obj) : Set (i ⊔ o ⊔ e ⊔
3131
⟨⟩∘ : {Y Z} (f : i Y ⇒ P i) (g : Z ⇒ Y) ⟨ f ⟩ ∘ g ≈ ⟨ (λ i f i ∘ g) ⟩
3232
⟨⟩∘ f g = ⟺ (unique (pullˡ commute))
3333

34-
⟨⟩-cong : {Y} (f g : i Y ⇒ P i) (eq : i f i ≈ g i) ⟨ f ⟩ ≈ ⟨ g ⟩
35-
⟨⟩-cong f g eq = unique (trans commute (⟺ (eq _)))
34+
⟨⟩-cong : {Y} {f g : i Y ⇒ P i} (eq : {i} f i ≈ g i) ⟨ f ⟩ ≈ ⟨ g ⟩
35+
⟨⟩-cong eq = unique (trans commute (⟺ eq))
3636

37-
unique′ : {Y} (h h′ : Y ⇒ X) ( {i} π i ∘ h′ ≈ π i ∘ h) h′ ≈ h
38-
unique′ h h′ f = trans (⟺ (unique f)) (η _)
37+
unique′ : {Y} {h h′ : Y ⇒ X} ( {i} π i ∘ h′ ≈ π i ∘ h) h′ ≈ h
38+
unique′ f = trans (⟺ (unique f)) (η _)
3939

4040
AllProductsOf : i Set (o ⊔ ℓ ⊔ e ⊔ suc i)
4141
AllProductsOf i = {I : Set i} (P : I Obj) IndexedProductOf P

0 commit comments

Comments
 (0)