@@ -50,15 +50,15 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
5050 Hom-NI′ = record
5151 { F⇒G = ntHelper record
5252 { η = λ _ → record { to = Hom-inverse.to ; cong = Hom-inverse.to-cong }
53- ; commute = λ _ eq → Ladjunct-comm eq
53+ ; commute = λ _ → Ladjunct-comm D.Equiv.refl
5454 }
5555 ; F⇐G = ntHelper record
5656 { η = λ _ → record { to = Hom-inverse.from ; cong = Hom-inverse.from-cong }
57- ; commute = λ _ eq → Radjunct-comm eq
57+ ; commute = λ _ → Radjunct-comm C.Equiv.refl
5858 }
5959 ; iso = λ _ → record
60- { isoˡ = λ eq → let open D.HomReasoning in RLadjunct≈id ○ eq
61- ; isoʳ = λ eq → let open C.HomReasoning in LRadjunct≈id ○ eq
60+ { isoˡ = RLadjunct≈id
61+ ; isoʳ = LRadjunct≈id
6262 }
6363 }
6464
@@ -88,10 +88,10 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
8888 { η = λ X → unitη X ⟨$⟩ D.id
8989 ; commute = λ {X} {Y} f → begin
9090 (unitη Y ⟨$⟩ D.id) ∘ f ≈⟨ introˡ R.identity ⟩
91- R.F₁ D.id ∘ (unitη Y ⟨$⟩ D.id) ∘ f ≈˘⟨ ⇒.commute (f , D.id) D.Equiv.refl ⟩
91+ R.F₁ D.id ∘ (unitη Y ⟨$⟩ D.id) ∘ f ≈˘⟨ ⇒.commute (f , D.id) ⟩
9292 ⇒.η (X , L.F₀ Y) ⟨$⟩ (D.id D.∘ D.id D.∘ L.F₁ f) ≈⟨ cong (⇒.η (X , L.F₀ Y)) (D.Equiv.trans D.identityˡ D.identityˡ) ⟩
9393 ⇒.η (X , L.F₀ Y) ⟨$⟩ L.F₁ f ≈⟨ cong (⇒.η (X , L.F₀ Y)) (MR.introʳ D (MR.elimʳ D L.identity)) ⟩
94- ⇒.η (X , L.F₀ Y) ⟨$⟩ (L.F₁ f D.∘ D.id D.∘ L.F₁ id) ≈⟨ ⇒.commute (C.id , L.F₁ f) D.Equiv.refl ⟩
94+ ⇒.η (X , L.F₀ Y) ⟨$⟩ (L.F₁ f D.∘ D.id D.∘ L.F₁ id) ≈⟨ ⇒.commute (C.id , L.F₁ f) ⟩
9595 R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
9696 R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∎
9797 }
@@ -107,10 +107,10 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
107107 { η = λ X → counitη X ⟨$⟩ C.id
108108 ; commute = λ {X} {Y} f → begin
109109 (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ identityˡ ⟩
110- id ∘ (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ ⇐.commute (R.F₁ f , D.id) C.Equiv.refl ⟩
110+ id ∘ (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ ⇐.commute (R.F₁ f , D.id) ⟩
111111 ⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ R.F₁ f) ≈⟨ cong (⇐.η (R.F₀ X , Y)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩
112112 ⇐.η (R.F₀ X , Y) ⟨$⟩ R.F₁ f ≈⟨ cong (⇐.η (R.F₀ X , Y)) (MR.introʳ C C.identityˡ) ⟩
113- ⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ f C.∘ C.id C.∘ C.id) ≈⟨ ⇐.commute (C.id , f) C.Equiv.refl ⟩
113+ ⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ f C.∘ C.id C.∘ C.id) ≈⟨ ⇐.commute (C.id , f) ⟩
114114 f ∘ (counitη X ⟨$⟩ C.id) ∘ L.F₁ C.id ≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩
115115 f ∘ (counitη X ⟨$⟩ C.id) ∎
116116 }
@@ -129,10 +129,10 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
129129 open MR D
130130 in begin
131131 η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ identityˡ ⟩
132- id ∘ η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ ⇐.commute (η unit A , id) C.Equiv.refl ⟩
132+ id ∘ η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ ⇐.commute (η unit A , id) ⟩
133133 ⇐.η (A , L.F₀ A) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ η unit A)
134134 ≈⟨ cong (⇐.η (A , L.F₀ A)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩
135- ⇐.η (A , L.F₀ A) ⟨$⟩ η unit A ≈⟨ isoˡ refl ⟩
135+ ⇐.η (A , L.F₀ A) ⟨$⟩ η unit A ≈⟨ isoˡ ⟩
136136 id
137137 ∎
138138 ; zag = λ {B} →
@@ -142,10 +142,10 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
142142 open MR C
143143 in begin
144144 R.F₁ (η counit B) ∘ η unit (R.F₀ B) ≈˘⟨ refl⟩∘⟨ identityʳ ⟩
145- R.F₁ (η counit B) ∘ η unit (R.F₀ B) ∘ id ≈˘⟨ ⇒.commute (id , η counit B) D.Equiv.refl ⟩
145+ R.F₁ (η counit B) ∘ η unit (R.F₀ B) ∘ id ≈˘⟨ ⇒.commute (id , η counit B) ⟩
146146 ⇒.η (R.F₀ B , B) ⟨$⟩ (η counit B D.∘ D.id D.∘ L.F₁ id)
147147 ≈⟨ cong (⇒.η (R.F₀ B , B)) (MR.elimʳ D (MR.elimʳ D L.identity)) ⟩
148- ⇒.η (R.F₀ B , B) ⟨$⟩ η counit B ≈⟨ isoʳ refl ⟩
148+ ⇒.η (R.F₀ B , B) ⟨$⟩ η counit B ≈⟨ isoʳ ⟩
149149 id ∎
150150 }
151151 where module i {X} = Iso (iso X)
@@ -180,13 +180,13 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
180180 lower (unitη Y ⟨$⟩ lift D.id) ∘ f
181181 ≈⟨ introˡ R.identity ⟩
182182 R.F₁ D.id ∘ lower (unitη Y ⟨$⟩ lift D.id) ∘ f
183- ≈˘⟨ lower (⇒.commute (f , D.id) (lift D.Equiv.refl) ) ⟩
183+ ≈˘⟨ lower (⇒.commute (f , D.id)) ⟩
184184 lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (D.id D.∘ D.id D.∘ L.F₁ f))
185185 ≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (D.Equiv.trans D.identityˡ D.identityˡ))) ⟩
186186 lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f))
187187 ≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (MR.introʳ D (MR.elimʳ D L.identity)))) ⟩
188188 lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f D.∘ D.id D.∘ L.F₁ id))
189- ≈⟨ lower (⇒.commute (C.id , L.F₁ f) (lift D.Equiv.refl) ) ⟩
189+ ≈⟨ lower (⇒.commute (C.id , L.F₁ f)) ⟩
190190 R.F₁ (L.F₁ f) ∘ lower (⇒.η (X , L.F₀ X) ⟨$⟩ lift D.id) ∘ id
191191 ≈⟨ refl⟩∘⟨ identityʳ ⟩
192192 F₁ (R ∘F L) f ∘ lower (unitη X ⟨$⟩ lift D.id) ∎
@@ -205,13 +205,13 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
205205 lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f)
206206 ≈˘⟨ identityˡ ⟩
207207 id ∘ lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f)
208- ≈˘⟨ lower (⇐.commute (R.F₁ f , D.id) (lift C.Equiv.refl) ) ⟩
208+ ≈˘⟨ lower (⇐.commute (R.F₁ f , D.id)) ⟩
209209 lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ R.F₁ f))
210210 ≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩
211211 lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f))
212212 ≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (MR.introʳ C C.identityˡ))) ⟩
213213 lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f C.∘ C.id C.∘ C.id))
214- ≈⟨ lower (⇐.commute (C.id , f) (lift C.Equiv.refl) ) ⟩
214+ ≈⟨ lower (⇐.commute (C.id , f)) ⟩
215215 f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id) ∘ L.F₁ C.id
216216 ≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩
217217 f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id)
@@ -234,11 +234,11 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
234234 lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A)
235235 ≈˘⟨ identityˡ ⟩
236236 id ∘ lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A)
237- ≈˘⟨ lower (⇐.commute (η unit A , id) (lift C.Equiv.refl) ) ⟩
237+ ≈˘⟨ lower (⇐.commute (η unit A , id)) ⟩
238238 lower (⇐.η (A , L.F₀ A) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ lower (⇒.η (A , L.F₀ A) ⟨$⟩ lift id)))
239239 ≈⟨ lower (cong (⇐.η (A , L.F₀ A)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩
240240 lower (⇐.η (A , L.F₀ A) ⟨$⟩ (⇒.η (A , L.F₀ A) ⟨$⟩ lift id))
241- ≈⟨ lower (isoˡ (lift refl) ) ⟩
241+ ≈⟨ lower (isoˡ) ⟩
242242 id ∎
243243 ; zag = λ {B} →
244244 let open C
@@ -249,11 +249,11 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
249249 R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id)
250250 ≈˘⟨ refl⟩∘⟨ identityʳ ⟩
251251 R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id) ∘ id
252- ≈˘⟨ lower (⇒.commute (id , η counit B) (lift D.Equiv.refl) ) ⟩
252+ ≈˘⟨ lower (⇒.commute (id , η counit B)) ⟩
253253 lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id) D.∘ D.id D.∘ L.F₁ id))
254254 ≈⟨ lower (cong (⇒.η (R.F₀ B , B)) (lift (MR.elimʳ D (MR.elimʳ D L.identity)))) ⟩
255255 lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)))
256- ≈⟨ lower ( isoʳ (lift refl)) ⟩
256+ ≈⟨ lower isoʳ ⟩
257257 id ∎
258258 }
259259 where open NaturalTransformation
0 commit comments