@@ -9,6 +9,7 @@ open Category 𝒞
99
1010open import Categories.Diagram.Coequalizer 𝒞 using (Coequalizer; IsCoequalizer; Coequalizer⇒Epi; up-to-iso)
1111open import Categories.Morphism 𝒞 using (_RetractOf_; _≅_)
12+ open _≅_
1213import Categories.Morphism.Reasoning as MR
1314open import Categories.Diagram.Equalizer op using (Equalizer)
1415open import Categories.Diagram.Equalizer.Properties op using (section-equalizer)
@@ -156,26 +157,26 @@ open MapBetweenCoequalizers public
156157CoeqOfIsomorphicDiagram : {A B : Obj} {f g : A ⇒ B} (coeq : Coequalizer f g )
157158 → {A' B' : Obj}
158159 → (a : A ≅ A') (b : B ≅ B')
159- → Coequalizer (_≅_. from b ∘ f ∘ _≅_. to a) (_≅_. from b ∘ g ∘ _≅_. to a)
160+ → Coequalizer (from b ∘ f ∘ to a) (from b ∘ g ∘ to a)
160161CoeqOfIsomorphicDiagram {f = f} {g} coeq {A'} {B'} a b = record
161- { arr = arr ∘ _≅_. to b
162+ { arr = arr ∘ to b
162163 ; isCoequalizer = record
163164 { equality = begin
164- (arr ∘ _≅_. to b) ∘ _≅_. from b ∘ f ∘ _≅_. to a ≈⟨ assoc²γβ ⟩
165- (arr ∘ _≅_. to b ∘ _≅_. from b) ∘ f ∘ _≅_. to a ≈⟨ elimʳ (_≅_. isoˡ b) ⟩∘⟨refl ⟩
166- arr ∘ f ∘ _≅_. to a ≈⟨ extendʳ equality ⟩
167- arr ∘ g ∘ _≅_. to a ≈⟨ introʳ (_≅_. isoˡ b) ⟩∘⟨refl ⟩
168- (arr ∘ _≅_. to b ∘ _≅_. from b) ∘ g ∘ _≅_. to a ≈⟨ assoc²βγ ⟩
169- (arr ∘ _≅_. to b) ∘ _≅_. from b ∘ g ∘ _≅_. to a ∎
165+ (arr ∘ to b) ∘ from b ∘ f ∘ to a ≈⟨ assoc²γβ ⟩
166+ (arr ∘ to b ∘ from b) ∘ f ∘ to a ≈⟨ elimʳ (isoˡ b) ⟩∘⟨refl ⟩
167+ arr ∘ f ∘ to a ≈⟨ extendʳ equality ⟩
168+ arr ∘ g ∘ to a ≈⟨ introʳ (isoˡ b) ⟩∘⟨refl ⟩
169+ (arr ∘ to b ∘ from b) ∘ g ∘ to a ≈⟨ assoc²βγ ⟩
170+ (arr ∘ to b) ∘ from b ∘ g ∘ to a ∎
170171 ; coequalize = coequalize'
171172 ; universal = λ {_} {h} {eq} → begin
172- h ≈⟨ switch-fromtoʳ b universal ⟩
173- (coequalize' eq ∘ arr) ∘ _≅_. to b ≈⟨ assoc ⟩
174- coequalize' eq ∘ (arr ∘ _≅_. to b) ∎
173+ h ≈⟨ switch-fromtoʳ b universal ⟩
174+ (coequalize' eq ∘ arr) ∘ to b ≈⟨ assoc ⟩
175+ coequalize' eq ∘ (arr ∘ to b) ∎
175176 ; unique = λ {_} {h} {i} {eq} e → unique (⟺ (switch-tofromʳ b (begin
176- (i ∘ arr) ∘ _≅_. to b ≈⟨ assoc ⟩
177- i ∘ arr ∘ _≅_. to b ≈⟨ ⟺ e ⟩
178- h ∎)))
177+ (i ∘ arr) ∘ to b ≈⟨ assoc ⟩
178+ i ∘ arr ∘ to b ≈⟨ ⟺ e ⟩
179+ h ∎)))
179180 }
180181 }
181182 where
@@ -184,17 +185,17 @@ CoeqOfIsomorphicDiagram {f = f} {g} coeq {A'} {B'} a b = record
184185 open MR 𝒞
185186
186187 f' g' : A' ⇒ B'
187- f' = _≅_. from b ∘ f ∘ _≅_. to a
188- g' = _≅_. from b ∘ g ∘ _≅_. to a
188+ f' = from b ∘ f ∘ to a
189+ g' = from b ∘ g ∘ to a
189190
190191 equalize'⇒equalize : {C : Obj} {h : B' ⇒ C}
191192 (eq : h ∘ f' ≈ h ∘ g')
192- → (h ∘ _≅_. from b) ∘ f ≈ (h ∘ _≅_. from b) ∘ g
193+ → (h ∘ from b) ∘ f ≈ (h ∘ from b) ∘ g
193194 equalize'⇒equalize {_} {h} eq = cancel-toʳ a (begin
194- ((h ∘ _≅_. from b) ∘ f) ∘ _≅_. to a ≈⟨ assoc²αε ⟩
195- h ∘ f' ≈⟨ eq ⟩
196- h ∘ g' ≈⟨ assoc²εα ⟩
197- ((h ∘ _≅_. from b) ∘ g) ∘ _≅_. to a ∎)
195+ ((h ∘ from b) ∘ f) ∘ to a ≈⟨ assoc²αε ⟩
196+ h ∘ f' ≈⟨ eq ⟩
197+ h ∘ g' ≈⟨ assoc²εα ⟩
198+ ((h ∘ from b) ∘ g) ∘ to a ∎)
198199
199200 coequalize' : {C : Obj} {h : B' ⇒ C}
200201 (eq : h ∘ f' ≈ h ∘ g')
@@ -354,9 +355,9 @@ module CoequalizerOfCoequalizer
354355 -- We need this for proving some coherences in the bicategory of monads and bimodules --
355356 IsoFitsInPentagon : (coeq : Coequalizer f⇒i₁ f⇒i₂)
356357 → arr coeqcoeqᵍʰ ∘ arr coeqʰ
357- ≈ _≅_. from (CoeqsAreIsomorphic coeq) ∘ arr coeq ∘ arr coeqⁱ
358+ ≈ from (CoeqsAreIsomorphic coeq) ∘ arr coeq ∘ arr coeqⁱ
358359 IsoFitsInPentagon coeq = begin
359- arr coeqcoeqᵍʰ ∘ arr coeqʰ ≈⟨ arrSq ⟩
360- arrᶠⁱ ∘ arr coeqⁱ ≈⟨ universal coeq ⟩∘⟨refl ⟩
361- (_≅_. from (CoeqsAreIsomorphic coeq) ∘ arr coeq) ∘ arr coeqⁱ ≈⟨ assoc ⟩
362- _≅_. from (CoeqsAreIsomorphic coeq) ∘ arr coeq ∘ arr coeqⁱ ∎
360+ arr coeqcoeqᵍʰ ∘ arr coeqʰ ≈⟨ arrSq ⟩
361+ arrᶠⁱ ∘ arr coeqⁱ ≈⟨ universal coeq ⟩∘⟨refl ⟩
362+ (from (CoeqsAreIsomorphic coeq) ∘ arr coeq) ∘ arr coeqⁱ ≈⟨ assoc ⟩
363+ from (CoeqsAreIsomorphic coeq) ∘ arr coeq ∘ arr coeqⁱ ∎
0 commit comments