@@ -8,16 +8,15 @@ open import Level
88
99open import Data.Product using (_,_; _×_)
1010open import Function using (_$_) renaming (_∘_ to _∙_)
11- open import Function.Equality using (Π; _⟶_)
12- import Function.Inverse as FI
11+ open import Function.Bundles using (Equivalence; LeftInverse; Func; _⟨$⟩_)
1312open import Relation.Binary using (Rel; IsEquivalence; Setoid)
1413
1514-- be explicit in imports to 'see' where the information comes from
1615open import Categories.Adjoint using (Adjoint; _⊣_)
1716open import Categories.Category.Core using (Category)
1817open import Categories.Category.Product using (Product; _⁂_)
19- open import Categories.Category.Instance.Setoids
20- open import Categories.Morphism
18+ open import Categories.Category.Instance.Setoids using (Setoids)
19+ open import Categories.Morphism using (Iso)
2120open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
2221open import Categories.Functor.Bifunctor using (Bifunctor)
2322open import Categories.Functor.Hom using (Hom[_][-,-])
@@ -50,11 +49,11 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
5049 Hom-NI′ : NaturalIsomorphism Hom[L-,-] Hom[-,R-]
5150 Hom-NI′ = record
5251 { F⇒G = ntHelper record
53- { η = λ _ → Hom-inverse.to
52+ { η = λ _ → record { to = Hom-inverse.to ; cong = Hom-inverse.to-cong }
5453 ; commute = λ _ eq → Ladjunct-comm eq
5554 }
5655 ; F⇐G = ntHelper record
57- { η = λ _ → Hom-inverse.from
56+ { η = λ _ → record { to = Hom-inverse.from ; cong = Hom-inverse.from-cong }
5857 ; commute = λ _ eq → Radjunct-comm eq
5958 }
6059 ; iso = λ _ → record
@@ -78,10 +77,10 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
7877 open NaturalIsomorphism Hni
7978 open NaturalTransformation
8079 open Functor
81- open Π
80+ open Func
8281
8382 private
84- unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
83+ unitη : ∀ X → Func ( F₀ Hom[L-,-] (X , L.F₀ X)) ( F₀ Hom[-,R-] (X , L.F₀ X) )
8584 unitη X = ⇒.η (X , L.F₀ X)
8685
8786 unit : NaturalTransformation idF (R ∘F L)
@@ -100,7 +99,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
10099 open HomReasoning
101100 open MR C
102101
103- counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
102+ counitη : ∀ X → Func ( F₀ Hom[-,R-] (R.F₀ X , X)) ( F₀ Hom[L-,-] (R.F₀ X , X) )
104103 counitη X = ⇐.η (R.F₀ X , X)
105104
106105 counit : NaturalTransformation (L ∘F R) idF
@@ -160,7 +159,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
160159 module L = Functor L
161160 module R = Functor R
162161 open Functor
163- open Π
162+ open Func
164163
165164 Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
166165 Hom[L-,-] = LiftSetoids ℓ e ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF)
@@ -171,7 +170,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
171170 module _ (Hni : Hom[L-,-] ≃ Hom[-,R-]) where
172171 open NaturalIsomorphism Hni using (module ⇒ ; module ⇐ ; iso)
173172 private
174- unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
173+ unitη : ∀ X → Func ( F₀ Hom[L-,-] (X , L.F₀ X)) ( F₀ Hom[-,R-] (X , L.F₀ X) )
175174 unitη X = ⇒.η (X , L.F₀ X)
176175
177176 unit : NaturalTransformation idF (R ∘F L)
@@ -196,7 +195,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
196195 open HomReasoning
197196 open MR C
198197
199- counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
198+ counitη : ∀ X → Func ( F₀ Hom[-,R-] (R.F₀ X , X)) ( F₀ Hom[L-,-] (R.F₀ X , X) )
200199 counitη X = ⇐.η (R.F₀ X , X)
201200
202201 counit : NaturalTransformation (L ∘F R) idF
0 commit comments