|
96 | 96 | <a id="3871" href="Categories.Bicategory.Opposite.html#3778" class="Bound">f</a> <a id="3873" href="Categories.Bicategory.html#2018" class="Function Operator">▷</a> <a id="3875" href="Categories.Bicategory.Extras.html#2341" class="Function">λ⇒</a> <a id="3886" href="Relation.Binary.Reasoning.Syntax.html#12345" class="Function Operator">∎</a> |
97 | 97 | <a id="3892" class="Symbol">;</a> <a id="3894" href="Categories.Bicategory.html#2837" class="Field">pentagon</a> <a id="3903" class="Symbol">=</a> <a id="3905" class="Symbol">λ</a> <a id="3907" class="Symbol">{</a><a id="3908" href="Categories.Bicategory.Opposite.html#3908" class="Bound">_</a> <a id="3910" href="Categories.Bicategory.Opposite.html#3910" class="Bound">_</a> <a id="3912" href="Categories.Bicategory.Opposite.html#3912" class="Bound">_</a> <a id="3914" href="Categories.Bicategory.Opposite.html#3914" class="Bound">_</a> <a id="3916" href="Categories.Bicategory.Opposite.html#3916" class="Bound">_</a> <a id="3918" href="Categories.Bicategory.Opposite.html#3918" class="Bound">f</a> <a id="3920" href="Categories.Bicategory.Opposite.html#3920" class="Bound">g</a> <a id="3922" href="Categories.Bicategory.Opposite.html#3922" class="Bound">h</a> <a id="3924" href="Categories.Bicategory.Opposite.html#3924" class="Bound">i</a><a id="3925" class="Symbol">}</a> <a id="3927" class="Symbol">→</a> <a id="3929" href="Relation.Binary.Reasoning.Syntax.html#1572" class="Function Operator">begin</a> |
98 | 98 | <a id="3943" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="3946" href="Categories.Bicategory.html#1916" class="Function Operator">◁</a> <a id="3948" href="Categories.Bicategory.Opposite.html#3924" class="Bound">i</a> <a id="3950" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="3953" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="3956" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="3959" href="Categories.Bicategory.Opposite.html#3918" class="Bound">f</a> <a id="3961" href="Categories.Bicategory.html#2018" class="Function Operator">▷</a> <a id="3963" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="3970" href="Relation.Binary.Reasoning.Syntax.html#7462" class="Function">≈˘⟨</a> <a id="3974" href="Categories.Category.Core.html#715" class="Function">hom.assoc</a> <a id="3984" href="Relation.Binary.Reasoning.Syntax.html#7462" class="Function">⟩</a> |
99 | | - <a id="3994" class="Symbol">(</a><a id="3995" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="3998" href="Categories.Bicategory.html#1916" class="Function Operator">◁</a> <a id="4000" href="Categories.Bicategory.Opposite.html#3924" class="Bound">i</a> <a id="4002" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="4005" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a><a id="4007" class="Symbol">)</a> <a id="4009" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="4012" href="Categories.Bicategory.Opposite.html#3918" class="Bound">f</a> <a id="4014" href="Categories.Bicategory.html#2018" class="Function Operator">▷</a> <a id="4016" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="4021" href="Relation.Binary.Reasoning.Syntax.html#7111" class="Function">≈⟨</a> <a id="4024" href="Categories.Bicategory.Extras.html#6304" class="Function">pentagon-inv</a> <a id="4037" href="Relation.Binary.Reasoning.Syntax.html#7111" class="Function">⟩</a> |
| 99 | + <a id="3994" class="Symbol">(</a><a id="3995" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="3998" href="Categories.Bicategory.html#1916" class="Function Operator">◁</a> <a id="4000" href="Categories.Bicategory.Opposite.html#3924" class="Bound">i</a> <a id="4002" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="4005" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a><a id="4007" class="Symbol">)</a> <a id="4009" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="4012" href="Categories.Bicategory.Opposite.html#3918" class="Bound">f</a> <a id="4014" href="Categories.Bicategory.html#2018" class="Function Operator">▷</a> <a id="4016" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="4021" href="Relation.Binary.Reasoning.Syntax.html#7111" class="Function">≈⟨</a> <a id="4024" href="Categories.Bicategory.Extras.html#7491" class="Function">pentagon-inv</a> <a id="4037" href="Relation.Binary.Reasoning.Syntax.html#7111" class="Function">⟩</a> |
100 | 100 | <a id="4047" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="4050" href="Categories.Bicategory.html#1825" class="Function Operator">∘ᵥ</a> <a id="4053" href="Categories.Bicategory.Extras.html#2442" class="Function">α⇐</a> <a id="4074" href="Relation.Binary.Reasoning.Syntax.html#12345" class="Function Operator">∎</a> |
101 | 101 | <a id="4080" class="Symbol">}</a> |
102 | 102 | <a id="4086" class="Keyword">where</a> <a id="4092" class="Keyword">open</a> <a id="4097" href="Categories.Category.Core.html#2462" class="Module">hom.HomReasoning</a> |
|
114 | 114 | <a id="4395" class="Symbol">;</a> <a id="4397" href="Categories.Enriched.Category.html#1317" class="Field">unitˡ</a> <a id="4405" class="Symbol">=</a> <a id="4407" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1442" class="Function">NaturalIsomorphism.op′</a> <a id="4430" href="Categories.Enriched.Category.html#1317" class="Function">unitˡ</a> |
115 | 115 | <a id="4442" class="Symbol">;</a> <a id="4444" href="Categories.Enriched.Category.html#1469" class="Field">unitʳ</a> <a id="4452" class="Symbol">=</a> <a id="4454" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1442" class="Function">NaturalIsomorphism.op′</a> <a id="4477" href="Categories.Enriched.Category.html#1469" class="Function">unitʳ</a> |
116 | 116 | <a id="4489" class="Symbol">}</a> |
117 | | - <a id="4495" class="Symbol">;</a> <a id="4497" href="Categories.Bicategory.html#2561" class="Field">triangle</a> <a id="4507" class="Symbol">=</a> <a id="4509" href="Categories.Bicategory.Extras.html#5969" class="Function">triangle-inv</a> |
118 | | - <a id="4526" class="Symbol">;</a> <a id="4528" href="Categories.Bicategory.html#2837" class="Field">pentagon</a> <a id="4538" class="Symbol">=</a> <a id="4540" href="Categories.Bicategory.Extras.html#6304" class="Function">pentagon-inv</a> |
| 117 | + <a id="4495" class="Symbol">;</a> <a id="4497" href="Categories.Bicategory.html#2561" class="Field">triangle</a> <a id="4507" class="Symbol">=</a> <a id="4509" href="Categories.Bicategory.Extras.html#7156" class="Function">triangle-inv</a> |
| 118 | + <a id="4526" class="Symbol">;</a> <a id="4528" href="Categories.Bicategory.html#2837" class="Field">pentagon</a> <a id="4538" class="Symbol">=</a> <a id="4540" href="Categories.Bicategory.Extras.html#7491" class="Function">pentagon-inv</a> |
119 | 119 | <a id="4557" class="Symbol">}</a> |
120 | 120 |
|
121 | 121 | <a id="4560" class="Comment">-- The combined 1- and 2-cell dual of C.</a> |
|
0 commit comments