@@ -8,8 +8,8 @@ open import Categories.Bicategory.Monad.Bimodule.Homomorphism using (Bimodulehom
88
99module Categories.Bicategory.Construction.Bimodules.TensorproductOfHomomorphisms
1010 {o ℓ e t} {𝒞 : Bicategory o ℓ e t} {localCoeq : LocalCoequalizers 𝒞}
11- {M₁ M₂ M₃ : Monad 𝒞} {B₂ B'₂ : Bimodule M₂ M₃} {B₁ B'₁ : Bimodule M₁ M₂}
12- (h₂ : Bimodulehomomorphism B₂ B'₂ ) (h₁ : Bimodulehomomorphism B₁ B'₁ ) where
11+ {M₁ M₂ M₃ : Monad 𝒞} {L L' : Bimodule M₂ M₃} {R R' : Bimodule M₁ M₂}
12+ (l : Bimodulehomomorphism L L' ) (r : Bimodulehomomorphism R R' ) where
1313
1414open import Level
1515import Categories.Category.Construction.Bimodules
@@ -30,18 +30,18 @@ open ComposeWithLocalCoequalizer 𝒞 localCoeq using (_coeq-◁_; _▷-coeq_)
3030open Monad M₁ using () renaming (C to C₁; T to T₁; μ to μ₁; η to η₁)
3131open Monad M₂ using () renaming (C to C₂; T to T₂; μ to μ₂; η to η₂)
3232open Monad M₃ using () renaming (C to C₃; T to T₃; μ to μ₃; η to η₃)
33- open Bimodule B₁ using () renaming (F to F₁; actionʳ to actionʳ₁; actionˡ to actionˡ₁)
34- open Bimodule B'₁ using () renaming (F to F'₁; actionʳ to actionʳ'₁; actionˡ to actionˡ'₁)
35- open Bimodule B₂ using () renaming (F to F₂; actionʳ to actionʳ₂; actionˡ to actionˡ₂)
36- open Bimodule B'₂ using () renaming (F to F'₂; actionʳ to actionʳ'₂; actionˡ to actionˡ'₂)
33+ open Bimodule R using () renaming (F to F₁; actionʳ to actionʳ₁; actionˡ to actionˡ₁)
34+ open Bimodule R' using () renaming (F to F'₁; actionʳ to actionʳ'₁; actionˡ to actionˡ'₁)
35+ open Bimodule L using () renaming (F to F₂; actionʳ to actionʳ₂; actionˡ to actionˡ₂)
36+ open Bimodule L' using () renaming (F to F'₂; actionʳ to actionʳ'₂; actionˡ to actionˡ'₂)
3737import Categories.Bicategory.Construction.Bimodules.TensorproductOfBimodules {𝒞 = 𝒞} {localCoeq} {M₁} {M₂} {M₃} as TensorproductOfBimodules
38- open TensorproductOfBimodules B₂ B₁ using (B₂⊗B₁ ; F₂⊗F₁; act-to-the-left; act-to-the-right)
39- open TensorproductOfBimodules B'₂ B'₁ using ()
40- renaming (B₂⊗B₁ to B'₂⊗B'₁ ; F₂⊗F₁ to F'₂⊗F'₁; act-to-the-left to act-to-the-left'; act-to-the-right to act-to-the-right')
41- open Bimodule B₂⊗B₁ using (F; actionˡ; actionʳ)
42- open Bimodule B'₂⊗B'₁ using () renaming (F to F'; actionˡ to actionˡ'; actionʳ to actionʳ')
43- open Bimodulehomomorphism h₁ using () renaming (α to α₁; linearˡ to linearˡ₁; linearʳ to linearʳ₁)
44- open Bimodulehomomorphism h₂ using () renaming (α to α₂; linearˡ to linearˡ₂; linearʳ to linearʳ₂)
38+ open TensorproductOfBimodules L R using (L⊗R ; F₂⊗F₁; act-to-the-left; act-to-the-right)
39+ open TensorproductOfBimodules L' R' using ()
40+ renaming (L⊗R to L'⊗R' ; F₂⊗F₁ to F'₂⊗F'₁; act-to-the-left to act-to-the-left'; act-to-the-right to act-to-the-right')
41+ open Bimodule L⊗R using (F; actionˡ; actionʳ)
42+ open Bimodule L'⊗R' using () renaming (F to F'; actionˡ to actionˡ'; actionʳ to actionʳ')
43+ open Bimodulehomomorphism r using () renaming (α to α₁; linearˡ to linearˡ₁; linearʳ to linearʳ₁)
44+ open Bimodulehomomorphism l using () renaming (α to α₂; linearˡ to linearˡ₂; linearʳ to linearʳ₂)
4545
4646open Definitions (hom C₁ C₃) -- for Commutative Squares
4747
@@ -86,8 +86,8 @@ sq₂ = begin
8686 where
8787 open CoeqProperties (hom C₁ C₃)
8888
89- open TensorproductOfBimodules.Left-Action B₂ B₁ using (F∘T₁Coequalizer; F₂▷actionˡ₁; actionˡSq)
90- open TensorproductOfBimodules.Left-Action B'₂ B'₁ using ()
89+ open TensorproductOfBimodules.Left-Action L R using (F∘T₁Coequalizer; F₂▷actionˡ₁; actionˡSq)
90+ open TensorproductOfBimodules.Left-Action L' R' using ()
9191 renaming (F₂▷actionˡ₁ to F'₂▷actionˡ'₁; actionˡSq to actionˡ'Sq)
9292
9393linearˡ-square : F'₂▷actionˡ'₁ ∘ᵥ (α₂ ⊚₁ α₁) ◁ T₁ ≈ (α₂ ⊚₁ α₁) ∘ᵥ F₂▷actionˡ₁
@@ -130,8 +130,8 @@ linearˡ = Coequalizer⇒Epi (hom C₁ C₃) F∘T₁Coequalizer
130130 linearˡ∘arr
131131
132132
133- open TensorproductOfBimodules.Right-Action B₂ B₁ using (T₃∘FCoequalizer; actionʳ₂◁F₁; actionʳSq)
134- open TensorproductOfBimodules.Right-Action B'₂ B'₁ using () renaming (actionʳ₂◁F₁ to actionʳ'₂◁F'₁; actionʳSq to actionʳ'Sq)
133+ open TensorproductOfBimodules.Right-Action L R using (T₃∘FCoequalizer; actionʳ₂◁F₁; actionʳSq)
134+ open TensorproductOfBimodules.Right-Action L' R' using () renaming (actionʳ₂◁F₁ to actionʳ'₂◁F'₁; actionʳSq to actionʳ'Sq)
135135
136136linearʳ-square : actionʳ'₂◁F'₁ ∘ᵥ T₃ ▷ (α₂ ⊚₁ α₁) ≈ (α₂ ⊚₁ α₁) ∘ᵥ actionʳ₂◁F₁
137137linearʳ-square = begin
@@ -171,8 +171,8 @@ linearʳ = Coequalizer⇒Epi (hom C₁ C₃) T₃∘FCoequalizer
171171 (actionʳ' ∘ᵥ T₃ ▷ α) (α ∘ᵥ actionʳ)
172172 linearʳ∘arr
173173
174- h₂⊗h₁ : Bimodulehomomorphism B₂⊗B₁ B'₂⊗B'₁
175- h₂⊗h₁ = record
174+ l⊗r : Bimodulehomomorphism L⊗R L'⊗R'
175+ l⊗r = record
176176 { α = α
177177 ; linearˡ = linearˡ
178178 ; linearʳ = linearʳ
0 commit comments