Skip to content

Commit ded777b

Browse files
Merge pull request #497 from agda/traces-are-natural
Traces are natural
2 parents ad7b49f + 0617ecb commit ded777b

File tree

1 file changed

+12
-2
lines changed

1 file changed

+12
-2
lines changed

src/Categories/Category/Monoidal/Traced.agda

Lines changed: 12 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,17 +12,18 @@ open import Level
1212
open import Data.Product using (_,_)
1313

1414
open import Categories.Category.Monoidal.Symmetric M
15+
open import Categories.Category.Monoidal.Reasoning M
1516

1617
private
1718
variable
1819
A B X Y : Obj
1920
f g : A ⇒ B
2021

2122
------------------------------------------------------------------------------
22-
-- Def from http://ncatlab.org/nlab/show/traced+monoidal+category
23+
-- Def from Traced monoidal categories (Joyal, Street, & Verity, 1996)
2324
--
2425
-- A symmetric monoidal category (C,⊗,1,b) (where b is the symmetry) is
25-
-- said to be traced if it is equipped with a natural family of functions
26+
-- said to be traced if it is equipped with a natural family* of functions
2627
--
2728
-- TrXA,B:C(A⊗X,B⊗X)→C(A,B)
2829
-- satisfying three axioms:
@@ -33,6 +34,8 @@ private
3334
-- Superposing: TrXC⊗A,C⊗B(idC⊗f)=idC⊗TrXA,B(f) (for all f:A⊗X→B⊗X)
3435
--
3536
-- Yanking: TrXX,X(bX,X)=idX
37+
--
38+
-- (*) this means the family needs to be "natural" in A, B, and X!
3639

3740
-- Traced monoidal category
3841
-- is a symmetric monoidal category with a trace operation
@@ -47,6 +50,13 @@ record Traced : Set (levelOfTerm M) where
4750

4851
field
4952
trace : {X A B} A ⊗₀ X ⇒ B ⊗₀ X A ⇒ B
53+
trace-resp-≈ : f ≈ g trace f ≈ trace g
54+
55+
-- dinaturality in X
56+
slide : trace (f ∘ id ⊗₁ g) ≈ trace (id ⊗₁ g ∘ f)
57+
-- naturality in A and B
58+
tightenₗ : trace (f ⊗₁ id ∘ g) ≈ f ∘ trace g
59+
tightenᵣ : trace (f ∘ g ⊗₁ id) ≈ trace f ∘ g
5060

5161
vanishing₁ : trace {X = unit} (f ⊗₁ id) ≈ f
5262
vanishing₂ : trace {X = X} (trace {X = Y} (associator.to ∘ f ∘ associator.from))

0 commit comments

Comments
 (0)