Skip to content

Commit e30d2a6

Browse files
committed
Adapt to the name changes in Unitor.agda
1 parent 83f7da5 commit e30d2a6

File tree

3 files changed

+69
-69
lines changed

3 files changed

+69
-69
lines changed

src/Categories/Bicategory/Construction/Bimodules.agda

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -46,16 +46,16 @@ Bimodules = record
4646
; iso = λ ((B₃ , B₂) , B₁) _≅_.iso (associator-⊗ {B₃ = B₃} {B₂} {B₁})
4747
}
4848
; unitˡ = niHelper record
49-
{ η = λ (_ , B) _≅_.from (Unitorˡ⊗ {B = B})
50-
; η⁻¹ = λ (_ , B) _≅_.to (Unitorˡ⊗ {B = B})
51-
; commute = λ (_ , f) λ⇒⊗-natural f
52-
; iso = λ (_ , B) _≅_.iso (Unitorˡ⊗ {B = B})
49+
{ η = λ (_ , B) _≅_.from (unitorˡ-⊗ {B = B})
50+
; η⁻¹ = λ (_ , B) _≅_.to (unitorˡ-⊗ {B = B})
51+
; commute = λ (_ , f) λ⇒-⊗-natural f
52+
; iso = λ (_ , B) _≅_.iso (unitorˡ-⊗ {B = B})
5353
}
5454
; unitʳ = niHelper record
55-
{ η = λ (B , _) _≅_.from (Unitorʳ⊗ {B = B})
56-
; η⁻¹ = λ (B , _) _≅_.to (Unitorʳ⊗ {B = B})
57-
; commute = λ (f , _) ρ⇒⊗-natural f
58-
; iso = λ (B , _) _≅_.iso (Unitorʳ⊗ {B = B})
55+
{ η = λ (B , _) _≅_.from (unitorʳ-⊗ {B = B})
56+
; η⁻¹ = λ (B , _) _≅_.to (unitorʳ-⊗ {B = B})
57+
; commute = λ (f , _) ρ⇒-⊗-natural f
58+
; iso = λ (B , _) _≅_.iso (unitorʳ-⊗ {B = B})
5959
}
6060
}
6161
; triangle = λ {_} {_} {_} {B₁} {B₂} triangle⊗ {B₂ = B₂} {B₁}
@@ -73,11 +73,11 @@ Bimodules = record
7373
open import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Associator.Naturality {𝒞 = 𝒞} {localCoeq}
7474
using (α⇒-⊗-natural)
7575
import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor {𝒞 = 𝒞} {localCoeq} as Unitor
76-
open Unitor.Left-Unitor using (Unitorˡ⊗)
77-
open Unitor.Right-Unitor using (Unitorʳ⊗)
76+
open Unitor.Left-Unitor using (unitorˡ-⊗)
77+
open Unitor.Right-Unitor using (unitorʳ-⊗)
7878
import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor.Naturality {𝒞 = 𝒞} {localCoeq} as Unitor-Naturality
79-
open Unitor-Naturality.Left-Unitor-natural using (λ⇒⊗-natural)
80-
open Unitor-Naturality.Right-Unitor-natural using (ρ⇒⊗-natural)
79+
open Unitor-Naturality.Left-Unitor-natural using (λ⇒-⊗-natural)
80+
open Unitor-Naturality.Right-Unitor-natural using (ρ⇒-⊗-natural)
8181
open import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Coherence.Pentagon {𝒞 = 𝒞} {localCoeq}
8282
using (pentagon⊗)
8383
open import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Coherence.Triangle {𝒞 = 𝒞} {localCoeq}

src/Categories/Bicategory/Construction/Bimodules/Tensorproduct/Coherence/Triangle.agda

Lines changed: 27 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -47,8 +47,8 @@ open import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Associato
4747
using (associator-⊗-from; hexagon)
4848
import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor
4949
{𝒞 = 𝒞} {localCoeq} as Unitor
50-
open Unitor.Left-Unitor using (Unitorˡ⊗From) renaming (triangle to left-unitor-triangle)
51-
open Unitor.Right-Unitor using (Unitorʳ⊗From) renaming (triangle to right-unitor-triangle)
50+
open Unitor.Left-Unitor using (unitorˡ-⊗-from) renaming (triangle to left-unitor-triangle)
51+
open Unitor.Right-Unitor using (unitorʳ-⊗-from) renaming (triangle to right-unitor-triangle)
5252

5353
open TensorproductOfBimodules using (CoeqBimods)
5454
open TensorproductOfHomomorphisms using (αSq-⊗)
@@ -58,65 +58,65 @@ open Bimodule B₁ using () renaming (F to F₁; actionʳ to actionʳ₁)
5858
open Bimodule B₂ using () renaming (F to F₂; actionˡ to actionˡ₂)
5959

6060
abstract
61-
triangle⊗∘arr² : ((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
61+
triangle⊗∘arr² : ((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
6262
∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
6363
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
6464
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
65-
≈ (Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
65+
≈ (Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
6666
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
6767
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
6868
triangle⊗∘arr² = begin
6969

70-
((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
70+
((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
7171
∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
7272
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
7373
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
7474
≈⟨ assoc₂ ⟩
7575

76-
(Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
76+
(Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
7777
∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
7878
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
7979
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
8080
≈⟨ assoc₂ ⟩
8181

82-
Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
82+
Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
8383
∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁})
8484
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
8585
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
8686
≈⟨ refl⟩∘⟨ ⟺ (hexagon {B₃ = B₂} {Id-Bimod} {B₁}) ⟩
8787

88-
Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
88+
Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
8989
∘ᵥ Coequalizer.arr (CoeqBimods B₂ (Id-Bimod ⊗₀ B₁))
9090
∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
9191
∘ᵥ associator.from {f = F₂} {T₂} {F₁}
9292
≈⟨ sym-assoc₂ ⟩
9393

94-
(Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
94+
(Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
9595
∘ᵥ Coequalizer.arr (CoeqBimods B₂ (Id-Bimod ⊗₀ B₁)))
9696
∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
9797
∘ᵥ associator.from {f = F₂} {T₂} {F₁}
98-
≈⟨ ⟺ (αSq-⊗ (id-bimodule-hom {B = B₂}) (Unitorˡ⊗From {B = B₁})) ⟩∘⟨refl ⟩
98+
≈⟨ ⟺ (αSq-⊗ (id-bimodule-hom {B = B₂}) (unitorˡ-⊗-from {B = B₁})) ⟩∘⟨refl ⟩
9999

100100
(Coequalizer.arr (CoeqBimods B₂ B₁)
101-
∘ᵥ F₂ ▷ Bimodhom.α (Unitorˡ⊗From {B = B₁}))
101+
∘ᵥ F₂ ▷ Bimodhom.α (unitorˡ-⊗-from {B = B₁}))
102102
∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
103103
∘ᵥ associator.from {f = F₂} {T₂} {F₁}
104104
≈⟨ assoc₂ ⟩
105105

106106
Coequalizer.arr (CoeqBimods B₂ B₁)
107-
∘ᵥ F₂ ▷ Bimodhom.α (Unitorˡ⊗From {B = B₁})
107+
∘ᵥ F₂ ▷ Bimodhom.α (unitorˡ-⊗-from {B = B₁})
108108
∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
109109
∘ᵥ associator.from {f = F₂} {T₂} {F₁}
110110
≈⟨ refl⟩∘⟨ sym-assoc₂ ⟩
111111

112112
Coequalizer.arr (CoeqBimods B₂ B₁)
113-
∘ᵥ (F₂ ▷ Bimodhom.α (Unitorˡ⊗From {B = B₁})
113+
∘ᵥ (F₂ ▷ Bimodhom.α (unitorˡ-⊗-from {B = B₁})
114114
∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁))
115115
∘ᵥ associator.from {f = F₂} {T₂} {F₁}
116116
≈⟨ refl⟩∘⟨ ∘ᵥ-distr-▷ ⟩∘⟨refl ⟩
117117

118118
Coequalizer.arr (CoeqBimods B₂ B₁)
119-
∘ᵥ F₂ ▷ (Bimodhom.α (Unitorˡ⊗From {B = B₁})
119+
∘ᵥ F₂ ▷ (Bimodhom.α (unitorˡ-⊗-from {B = B₁})
120120
∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B₁))
121121
∘ᵥ associator.from {f = F₂} {T₂} {F₁}
122122
≈⟨ refl⟩∘⟨ ▷-resp-≈ (left-unitor-triangle {B = B₁}) ⟩∘⟨refl ⟩
@@ -136,21 +136,21 @@ abstract
136136
≈⟨ refl⟩∘⟨ ◁-resp-≈ ( ⟺ (right-unitor-triangle {B = B₂})) ⟩
137137

138138
Coequalizer.arr (CoeqBimods B₂ B₁)
139-
∘ᵥ (Bimodhom.α (Unitorʳ⊗From {B = B₂})
139+
∘ᵥ (Bimodhom.α (unitorʳ-⊗-from {B = B₂})
140140
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod)) ◁ F₁
141141
≈⟨ refl⟩∘⟨ ⟺ ∘ᵥ-distr-◁ ⟩
142142

143143
Coequalizer.arr (CoeqBimods B₂ B₁)
144-
∘ᵥ Bimodhom.α (Unitorʳ⊗From {B = B₂}) ◁ F₁
144+
∘ᵥ Bimodhom.α (unitorʳ-⊗-from {B = B₂}) ◁ F₁
145145
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
146146
≈⟨ sym-assoc₂ ⟩
147147

148148
(Coequalizer.arr (CoeqBimods B₂ B₁)
149-
∘ᵥ Bimodhom.α (Unitorʳ⊗From {B = B₂}) ◁ F₁)
149+
∘ᵥ Bimodhom.α (unitorʳ-⊗-from {B = B₂}) ◁ F₁)
150150
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
151-
≈⟨ αSq-⊗ (Unitorʳ⊗From {B = B₂}) (id-bimodule-hom {B = B₁}) ⟩∘⟨refl ⟩
151+
≈⟨ αSq-⊗ (unitorʳ-⊗-from {B = B₂}) (id-bimodule-hom {B = B₁}) ⟩∘⟨refl ⟩
152152

153-
(Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
153+
(Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
154154
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
155155
∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁ ∎
156156

@@ -167,28 +167,28 @@ abstract
167167
Coequalizer.arr (CoeqBimods B₂ B₁) ∘ᵥ actionˡ₂ ◁ F₁ ∘ᵥ associator.to ≈⟨ ⟺ (Coequalizer.equality (CoeqBimods B₂ B₁)) ⟩
168168
Coequalizer.arr (CoeqBimods B₂ B₁) ∘ᵥ F₂ ▷ actionʳ₁ ∎
169169

170-
triangle⊗∘arr : (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
170+
triangle⊗∘arr : (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
171171
∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
172172
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
173-
≈ Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
173+
≈ Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
174174
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
175175

176176
triangle⊗∘arr = Coequalizer⇒Epi
177177
((CoeqBimods B₂ Id-Bimod) coeq-◁ F₁)
178-
((Bimodhom.α (id-bimodule-hom ⊗₁ Unitorˡ⊗From)
178+
((Bimodhom.α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from)
179179
∘ᵥ Bimodhom.α associator-⊗-from)
180180
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
181-
(Bimodhom.α (Unitorʳ⊗From ⊗₁ id-bimodule-hom)
181+
(Bimodhom.α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom)
182182
∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
183183
triangle⊗∘arr²
184184

185-
triangle⊗ : Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
185+
triangle⊗ : Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
186186
∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁})
187-
≈ Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
187+
≈ Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
188188

189189
triangle⊗ = Coequalizer⇒Epi
190190
(CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
191-
(Bimodhom.α (id-bimodule-hom ⊗₁ Unitorˡ⊗From)
191+
(Bimodhom.α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from)
192192
∘ᵥ Bimodhom.α associator-⊗-from)
193-
(Bimodhom.α (Unitorʳ⊗From ⊗₁ id-bimodule-hom))
193+
(Bimodhom.α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom))
194194
triangle⊗∘arr

src/Categories/Bicategory/Construction/Bimodules/Tensorproduct/Unitor/Naturality.agda

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -51,61 +51,61 @@ import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor
5151
module Left-Unitor-natural where
5252
open Bimodule B using (actionʳ)
5353
open Bimodule B' using () renaming (actionʳ to actionʳ')
54-
open Unitor.Left-Unitor using (λ⇒⊗; triangle)
54+
open Unitor.Left-Unitor using (λ⇒-⊗; triangle)
5555

5656
abstract
57-
λ⇒⊗-natural∘arr : (λ⇒⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f)) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B)
58-
≈ (Bimodhom.α f ∘ᵥ λ⇒⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B)
59-
λ⇒⊗-natural∘arr = begin
60-
(λ⇒⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f)) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ≈⟨ assoc₂ ⟩
61-
λ⇒⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ≈⟨ refl⟩∘⟨ ⟺ αSq-⊗ ⟩
62-
λ⇒⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B') ∘ᵥ T₂ ▷ Bimodhom.α f ≈⟨ sym-assoc₂ ⟩
63-
(λ⇒⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B')) ∘ᵥ T₂ ▷ Bimodhom.α f ≈⟨ triangle {B'} ⟩∘⟨refl ⟩
57+
λ⇒-⊗-natural∘arr : (λ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f)) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B)
58+
≈ (Bimodhom.α f ∘ᵥ λ⇒-⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B)
59+
λ⇒-⊗-natural∘arr = begin
60+
(λ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f)) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ≈⟨ assoc₂ ⟩
61+
λ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ≈⟨ refl⟩∘⟨ ⟺ αSq-⊗ ⟩
62+
λ⇒-⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B') ∘ᵥ T₂ ▷ Bimodhom.α f ≈⟨ sym-assoc₂ ⟩
63+
(λ⇒-⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B')) ∘ᵥ T₂ ▷ Bimodhom.α f ≈⟨ triangle {B'} ⟩∘⟨refl ⟩
6464
actionʳ' ∘ᵥ T₂ ▷ Bimodhom.α f ≈⟨ linearʳ ⟩
6565
Bimodhom.α f ∘ᵥ actionʳ ≈⟨ refl⟩∘⟨ ⟺ (triangle {B}) ⟩
66-
Bimodhom.α f ∘ᵥ λ⇒⊗ {B} ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ≈⟨ sym-assoc₂ ⟩
67-
(Bimodhom.α f ∘ᵥ λ⇒⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ∎
66+
Bimodhom.α f ∘ᵥ λ⇒-⊗ {B} ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ≈⟨ sym-assoc₂ ⟩
67+
(Bimodhom.α f ∘ᵥ λ⇒-⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B) ∎
6868
where
6969
open hom.HomReasoning
7070
open Bimodhom f using (linearʳ)
7171
open TensorproductOfHomomorphisms id-bimodule-hom f using (αSq-⊗)
7272

73-
λ⇒⊗-natural : λ⇒⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f) ≈ Bimodhom.α f ∘ᵥ λ⇒⊗ {B}
74-
λ⇒⊗-natural = Coequalizer⇒Epi
73+
λ⇒-⊗-natural : λ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f) ≈ Bimodhom.α f ∘ᵥ λ⇒-⊗ {B}
74+
λ⇒-⊗-natural = Coequalizer⇒Epi
7575
(CoeqBimods Id-Bimod B)
76-
(λ⇒⊗ ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f))
77-
(Bimodhom.α f ∘ᵥ λ⇒⊗)
78-
λ⇒⊗-natural∘arr
76+
(λ⇒-⊗ ∘ᵥ Bimodhom.α (id-bimodule-hom ⊗₁ f))
77+
(Bimodhom.α f ∘ᵥ λ⇒-⊗)
78+
λ⇒-⊗-natural∘arr
7979

8080
-- end abstract --
8181

8282
module Right-Unitor-natural where
8383
open Bimodule B using (actionˡ)
8484
open Bimodule B' using () renaming (actionˡ to actionˡ')
85-
open Unitor.Right-Unitor using (ρ⇒⊗; triangle)
85+
open Unitor.Right-Unitor using (ρ⇒-⊗; triangle)
8686

8787
abstract
88-
ρ⇒⊗-natural∘arr : (ρ⇒⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom)) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod)
89-
≈ (Bimodhom.α f ∘ᵥ ρ⇒⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod)
90-
ρ⇒⊗-natural∘arr = begin
91-
(ρ⇒⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom)) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ≈⟨ assoc₂ ⟩
92-
ρ⇒⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ≈⟨ refl⟩∘⟨ ⟺ αSq-⊗ ⟩
93-
ρ⇒⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods B' Id-Bimod) ∘ᵥ Bimodhom.α f ◁ T₁ ≈⟨ sym-assoc₂ ⟩
94-
(ρ⇒⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods B' Id-Bimod)) ∘ᵥ Bimodhom.α f ◁ T₁ ≈⟨ triangle {B'} ⟩∘⟨refl ⟩
88+
ρ⇒-⊗-natural∘arr : (ρ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom)) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod)
89+
≈ (Bimodhom.α f ∘ᵥ ρ⇒-⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod)
90+
ρ⇒-⊗-natural∘arr = begin
91+
(ρ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom)) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ≈⟨ assoc₂ ⟩
92+
ρ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ≈⟨ refl⟩∘⟨ ⟺ αSq-⊗ ⟩
93+
ρ⇒-⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods B' Id-Bimod) ∘ᵥ Bimodhom.α f ◁ T₁ ≈⟨ sym-assoc₂ ⟩
94+
(ρ⇒-⊗ {B'} ∘ᵥ Coequalizer.arr (CoeqBimods B' Id-Bimod)) ∘ᵥ Bimodhom.α f ◁ T₁ ≈⟨ triangle {B'} ⟩∘⟨refl ⟩
9595
actionˡ' ∘ᵥ Bimodhom.α f ◁ T₁ ≈⟨ linearˡ ⟩
9696
Bimodhom.α f ∘ᵥ actionˡ ≈⟨ refl⟩∘⟨ ⟺ (triangle {B}) ⟩
97-
Bimodhom.α f ∘ᵥ ρ⇒⊗ {B} ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ≈⟨ sym-assoc₂ ⟩
98-
(Bimodhom.α f ∘ᵥ ρ⇒⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ∎
97+
Bimodhom.α f ∘ᵥ ρ⇒-⊗ {B} ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ≈⟨ sym-assoc₂ ⟩
98+
(Bimodhom.α f ∘ᵥ ρ⇒-⊗ {B}) ∘ᵥ Coequalizer.arr (CoeqBimods B Id-Bimod) ∎
9999
where
100100
open hom.HomReasoning
101101
open Bimodhom f using (linearˡ)
102102
open TensorproductOfHomomorphisms f id-bimodule-hom using (αSq-⊗)
103103

104-
ρ⇒⊗-natural : ρ⇒⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom) ≈ Bimodhom.α f ∘ᵥ ρ⇒⊗ {B}
105-
ρ⇒⊗-natural = Coequalizer⇒Epi
104+
ρ⇒-⊗-natural : ρ⇒-⊗ {B'} ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom) ≈ Bimodhom.α f ∘ᵥ ρ⇒-⊗ {B}
105+
ρ⇒-⊗-natural = Coequalizer⇒Epi
106106
(CoeqBimods B Id-Bimod)
107-
(ρ⇒⊗ ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom))
108-
(Bimodhom.α f ∘ᵥ ρ⇒⊗)
109-
ρ⇒⊗-natural∘arr
107+
(ρ⇒-⊗ ∘ᵥ Bimodhom.α (f ⊗₁ id-bimodule-hom))
108+
(Bimodhom.α f ∘ᵥ ρ⇒-⊗)
109+
ρ⇒-⊗-natural∘arr
110110

111111
-- end abstract --

0 commit comments

Comments
 (0)