@@ -47,8 +47,8 @@ open import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Associato
4747 using (associator-⊗-from; hexagon)
4848import Categories.Bicategory.Construction.Bimodules.Tensorproduct.Unitor
4949 {𝒞 = 𝒞} {localCoeq} as Unitor
50- open Unitor.Left-Unitor using (Unitorˡ⊗From ) renaming (triangle to left-unitor-triangle)
51- open Unitor.Right-Unitor using (Unitorʳ⊗From ) renaming (triangle to right-unitor-triangle)
50+ open Unitor.Left-Unitor using (unitorˡ-⊗-from ) renaming (triangle to left-unitor-triangle)
51+ open Unitor.Right-Unitor using (unitorʳ-⊗-from ) renaming (triangle to right-unitor-triangle)
5252
5353open TensorproductOfBimodules using (CoeqBimods)
5454open TensorproductOfHomomorphisms using (αSq-⊗)
@@ -58,65 +58,65 @@ open Bimodule B₁ using () renaming (F to F₁; actionʳ to actionʳ₁)
5858open Bimodule B₂ using () renaming (F to F₂; actionˡ to actionˡ₂)
5959
6060abstract
61- triangle⊗∘arr² : ((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
61+ triangle⊗∘arr² : ((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
6262 ∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
6363 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
6464 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
65- ≈ (Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
65+ ≈ (Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
6666 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
6767 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
6868 triangle⊗∘arr² = begin
6969
70- ((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
70+ ((Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
7171 ∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
7272 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
7373 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
7474 ≈⟨ assoc₂ ⟩
7575
76- (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
76+ (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
7777 ∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
7878 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
7979 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
8080 ≈⟨ assoc₂ ⟩
8181
82- Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
82+ Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
8383 ∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁})
8484 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
8585 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
8686 ≈⟨ refl⟩∘⟨ ⟺ (hexagon {B₃ = B₂} {Id-Bimod} {B₁}) ⟩
8787
88- Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
88+ Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
8989 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ (Id-Bimod ⊗₀ B₁))
9090 ∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
9191 ∘ᵥ associator.from {f = F₂} {T₂} {F₁}
9292 ≈⟨ sym-assoc₂ ⟩
9393
94- (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
94+ (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
9595 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ (Id-Bimod ⊗₀ B₁)))
9696 ∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
9797 ∘ᵥ associator.from {f = F₂} {T₂} {F₁}
98- ≈⟨ ⟺ (αSq-⊗ (id-bimodule-hom {B = B₂}) (Unitorˡ⊗From {B = B₁})) ⟩∘⟨refl ⟩
98+ ≈⟨ ⟺ (αSq-⊗ (id-bimodule-hom {B = B₂}) (unitorˡ-⊗-from {B = B₁})) ⟩∘⟨refl ⟩
9999
100100 (Coequalizer.arr (CoeqBimods B₂ B₁)
101- ∘ᵥ F₂ ▷ Bimodhom.α (Unitorˡ⊗From {B = B₁}))
101+ ∘ᵥ F₂ ▷ Bimodhom.α (unitorˡ-⊗-from {B = B₁}))
102102 ∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
103103 ∘ᵥ associator.from {f = F₂} {T₂} {F₁}
104104 ≈⟨ assoc₂ ⟩
105105
106106 Coequalizer.arr (CoeqBimods B₂ B₁)
107- ∘ᵥ F₂ ▷ Bimodhom.α (Unitorˡ⊗From {B = B₁})
107+ ∘ᵥ F₂ ▷ Bimodhom.α (unitorˡ-⊗-from {B = B₁})
108108 ∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁)
109109 ∘ᵥ associator.from {f = F₂} {T₂} {F₁}
110110 ≈⟨ refl⟩∘⟨ sym-assoc₂ ⟩
111111
112112 Coequalizer.arr (CoeqBimods B₂ B₁)
113- ∘ᵥ (F₂ ▷ Bimodhom.α (Unitorˡ⊗From {B = B₁})
113+ ∘ᵥ (F₂ ▷ Bimodhom.α (unitorˡ-⊗-from {B = B₁})
114114 ∘ᵥ F₂ ▷ Coequalizer.arr (CoeqBimods Id-Bimod B₁))
115115 ∘ᵥ associator.from {f = F₂} {T₂} {F₁}
116116 ≈⟨ refl⟩∘⟨ ∘ᵥ-distr-▷ ⟩∘⟨refl ⟩
117117
118118 Coequalizer.arr (CoeqBimods B₂ B₁)
119- ∘ᵥ F₂ ▷ (Bimodhom.α (Unitorˡ⊗From {B = B₁})
119+ ∘ᵥ F₂ ▷ (Bimodhom.α (unitorˡ-⊗-from {B = B₁})
120120 ∘ᵥ Coequalizer.arr (CoeqBimods Id-Bimod B₁))
121121 ∘ᵥ associator.from {f = F₂} {T₂} {F₁}
122122 ≈⟨ refl⟩∘⟨ ▷-resp-≈ (left-unitor-triangle {B = B₁}) ⟩∘⟨refl ⟩
@@ -136,21 +136,21 @@ abstract
136136 ≈⟨ refl⟩∘⟨ ◁-resp-≈ ( ⟺ (right-unitor-triangle {B = B₂})) ⟩
137137
138138 Coequalizer.arr (CoeqBimods B₂ B₁)
139- ∘ᵥ (Bimodhom.α (Unitorʳ⊗From {B = B₂})
139+ ∘ᵥ (Bimodhom.α (unitorʳ-⊗-from {B = B₂})
140140 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod)) ◁ F₁
141141 ≈⟨ refl⟩∘⟨ ⟺ ∘ᵥ-distr-◁ ⟩
142142
143143 Coequalizer.arr (CoeqBimods B₂ B₁)
144- ∘ᵥ Bimodhom.α (Unitorʳ⊗From {B = B₂}) ◁ F₁
144+ ∘ᵥ Bimodhom.α (unitorʳ-⊗-from {B = B₂}) ◁ F₁
145145 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
146146 ≈⟨ sym-assoc₂ ⟩
147147
148148 (Coequalizer.arr (CoeqBimods B₂ B₁)
149- ∘ᵥ Bimodhom.α (Unitorʳ⊗From {B = B₂}) ◁ F₁)
149+ ∘ᵥ Bimodhom.α (unitorʳ-⊗-from {B = B₂}) ◁ F₁)
150150 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁
151- ≈⟨ αSq-⊗ (Unitorʳ⊗From {B = B₂}) (id-bimodule-hom {B = B₁}) ⟩∘⟨refl ⟩
151+ ≈⟨ αSq-⊗ (unitorʳ-⊗-from {B = B₂}) (id-bimodule-hom {B = B₁}) ⟩∘⟨refl ⟩
152152
153- (Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
153+ (Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
154154 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
155155 ∘ᵥ Coequalizer.arr (CoeqBimods B₂ Id-Bimod) ◁ F₁ ∎
156156
@@ -167,28 +167,28 @@ abstract
167167 Coequalizer.arr (CoeqBimods B₂ B₁) ∘ᵥ actionˡ₂ ◁ F₁ ∘ᵥ associator.to ≈⟨ ⟺ (Coequalizer.equality (CoeqBimods B₂ B₁)) ⟩
168168 Coequalizer.arr (CoeqBimods B₂ B₁) ∘ᵥ F₂ ▷ actionʳ₁ ∎
169169
170- triangle⊗∘arr : (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
170+ triangle⊗∘arr : (Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
171171 ∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
172172 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
173- ≈ Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
173+ ≈ Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
174174 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
175175
176176 triangle⊗∘arr = Coequalizer⇒Epi
177177 ((CoeqBimods B₂ Id-Bimod) coeq-◁ F₁)
178- ((Bimodhom.α (id-bimodule-hom ⊗₁ Unitorˡ⊗From )
178+ ((Bimodhom.α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from )
179179 ∘ᵥ Bimodhom.α associator-⊗-from)
180180 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
181- (Bimodhom.α (Unitorʳ⊗From ⊗₁ id-bimodule-hom)
181+ (Bimodhom.α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom)
182182 ∘ᵥ Coequalizer.arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
183183 triangle⊗∘arr²
184184
185- triangle⊗ : Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ Unitorˡ⊗From {B = B₁})
185+ triangle⊗ : Bimodhom.α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
186186 ∘ᵥ Bimodhom.α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁})
187- ≈ Bimodhom.α (Unitorʳ⊗From {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
187+ ≈ Bimodhom.α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
188188
189189 triangle⊗ = Coequalizer⇒Epi
190190 (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
191- (Bimodhom.α (id-bimodule-hom ⊗₁ Unitorˡ⊗From )
191+ (Bimodhom.α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from )
192192 ∘ᵥ Bimodhom.α associator-⊗-from)
193- (Bimodhom.α (Unitorʳ⊗From ⊗₁ id-bimodule-hom))
193+ (Bimodhom.α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom))
194194 triangle⊗∘arr
0 commit comments