@@ -86,24 +86,25 @@ abstract
8686 (α⇒ {f = F B₄} {F B₃} {F B₂ ∘₁ F B₁})
8787 (α (associator-⊗-from {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁}))
8888 ((arr (CoeqBimods B₄ (B₃ ⊗₀ B₂ ⊗₀ B₁)) ∘ᵥ F B₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁))) ∘ᵥ F B₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
89+
8990 face[43]21⇒4321 = begin
9091
9192 α (associator-⊗-from {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁})
9293 ∘ᵥ (arr (CoeqBimods (B₄ ⊗₀ B₃) (B₂ ⊗₀ B₁))
9394 ∘ᵥ F (B₄ ⊗₀ B₃) ▷ arr (CoeqBimods B₂ B₁))
9495 ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ (F B₂ ∘₁ F B₁)
95- ≈⟨ refl⟩∘⟨ extendˡ ◁-▷-exchg ⟩
96+ ≈⟨ refl⟩∘⟨ extendˡ ◁-▷-exchg ⟩
9697
9798 α (associator-⊗-from {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁})
9899 ∘ᵥ (arr (CoeqBimods (B₄ ⊗₀ B₃) (B₂ ⊗₀ B₁))
99100 ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F (B₂ ⊗₀ B₁))
100101 ∘ᵥ (F B₄ ∘₁ F B₃) ▷ arr (CoeqBimods B₂ B₁)
101- ≈⟨ glue′ (⟺ (hexagon-sq {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁})) α⇒-▷-∘₁ ⟩
102+ ≈⟨ glue′ (⟺ (hexagon-sq {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁})) α⇒-▷-∘₁ ⟩
102103
103104 ((arr (CoeqBimods B₄ (B₃ ⊗₀ B₂ ⊗₀ B₁))
104105 ∘ᵥ F B₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁)))
105106 ∘ᵥ F B₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
106- ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂ ∘₁ F B₁} ∎
107+ ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂ ∘₁ F B₁} ∎
107108
108109 where
109110 open hom.HomReasoning
@@ -120,22 +121,22 @@ abstract
120121 α (associator-⊗-from {B₃ = B₄} {B₃} {B₂} ◁-⊗ B₁)
121122 ∘ᵥ (arr (CoeqBimods ((B₄ ⊗₀ B₃) ⊗₀ B₂) B₁)
122123 ∘ᵥ arr (CoeqBimods (B₄ ⊗₀ B₃) B₂) ◁ F B₁)
123- ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁ ≈⟨ refl⟩∘⟨ assoc₂ ⟩
124+ ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁ ≈⟨ refl⟩∘⟨ assoc₂ ⟩
124125
125126 α (associator-⊗-from {B₃ = B₄} {B₃} {B₂} ◁-⊗ B₁)
126127 ∘ᵥ arr (CoeqBimods ((B₄ ⊗₀ B₃) ⊗₀ B₂) B₁)
127128 ∘ᵥ arr (CoeqBimods (B₄ ⊗₀ B₃) B₂) ◁ F B₁
128- ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁ ≈⟨ ⟺ (glue αSq-⊗ (◁-resp-long-sq′ hexagon-sq)) ⟩
129+ ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁ ≈⟨ ⟺ (glue αSq-⊗ (◁-resp-long-sq′ hexagon-sq)) ⟩
129130
130131 (arr (CoeqBimods (B₄ ⊗₀ B₃ ⊗₀ B₂) B₁)
131132 ∘ᵥ arr (CoeqBimods B₄ (B₃ ⊗₀ B₂)) ◁ F B₁
132133 ∘ᵥ (F B₄ ▷ arr (CoeqBimods B₃ B₂)) ◁ F B₁)
133- ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂} ◁ F B₁ ≈⟨ ⟺ assoc₂ ⟩∘⟨refl ⟩
134+ ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂} ◁ F B₁ ≈⟨ ⟺ assoc₂ ⟩∘⟨refl ⟩
134135
135136 ((arr (CoeqBimods (B₄ ⊗₀ B₃ ⊗₀ B₂) B₁)
136137 ∘ᵥ arr (CoeqBimods B₄ (B₃ ⊗₀ B₂)) ◁ F B₁)
137138 ∘ᵥ (F B₄ ▷ arr (CoeqBimods B₃ B₂)) ◁ F B₁)
138- ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂} ◁ F B₁ ∎
139+ ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂} ◁ F B₁ ∎
139140
140141 where
141142 open hom.HomReasoning
@@ -165,25 +166,22 @@ abstract
165166 α (B₄ ⊗-▷ associator-⊗-from {B₃ = B₃} {B₂} {B₁})
166167 ∘ᵥ (arr (CoeqBimods B₄ ((B₃ ⊗₀ B₂) ⊗₀ B₁))
167168 ∘ᵥ F B₄ ▷ arr (CoeqBimods (B₃ ⊗₀ B₂) B₁))
168- ∘ᵥ F B₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ refl⟩∘⟨ assoc₂ ⟩
169+ ∘ᵥ F B₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ refl⟩∘⟨ assoc₂ ⟩
169170
170171 α (B₄ ⊗-▷ associator-⊗-from {B₃ = B₃} {B₂} {B₁})
171172 ∘ᵥ arr (CoeqBimods B₄ ((B₃ ⊗₀ B₂) ⊗₀ B₁))
172173 ∘ᵥ F B₄ ▷ arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
173- ∘ᵥ F B₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ glue′
174- (⟺ αSq-⊗)
175- (▷-resp-long-sq (⟺ (hexagon-sq {B₃ = B₃} {B₂} {B₁})))
176- ⟩
174+ ∘ᵥ F B₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ glue′ (⟺ αSq-⊗) (▷-resp-long-sq (⟺ (hexagon-sq {B₃ = B₃} {B₂} {B₁}))) ⟩
177175
178176 (arr (CoeqBimods B₄ (B₃ ⊗₀ B₂ ⊗₀ B₁))
179177 ∘ᵥ F B₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁))
180178 ∘ᵥ F B₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
181- ∘ᵥ F B₄ ▷ α⇒ {f = F B₃} {F B₂} {F B₁} ≈⟨ ⟺ assoc₂ ⟩∘⟨refl ⟩
179+ ∘ᵥ F B₄ ▷ α⇒ {f = F B₃} {F B₂} {F B₁} ≈⟨ ⟺ assoc₂ ⟩∘⟨refl ⟩
182180
183181 ((arr (CoeqBimods B₄ (B₃ ⊗₀ B₂ ⊗₀ B₁))
184182 ∘ᵥ F B₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁)))
185183 ∘ᵥ F B₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
186- ∘ᵥ F B₄ ▷ α⇒ {f = F B₃} {F B₂} {F B₁} ∎
184+ ∘ᵥ F B₄ ▷ α⇒ {f = F B₃} {F B₂} {F B₁} ∎
187185
188186 where
189187 open hom.HomReasoning
@@ -213,43 +211,43 @@ abstract
213211 ∘ᵥ arr (CoeqBimods ((B₄ ⊗₀ B₃) ⊗₀ B₂) B₁))
214212 ∘ᵥ arr (CoeqBimods (B₄ ⊗₀ B₃) B₂) ◁ F B₁)
215213 ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁
216- ≈⟨ assoc²αδ ⟩
214+ ≈⟨ assoc²αδ ⟩
217215
218216 (α (B₄ ⊗-▷ associator-⊗-from {B₃ = B₃} {B₂} {B₁})
219217 ∘ᵥ α (associator-⊗-from {B₃ = B₄} {B₃ ⊗₀ B₂} {B₁})
220218 ∘ᵥ α (associator-⊗-from {B₃ = B₄} {B₃} {B₂} ◁-⊗ B₁))
221219 ∘ᵥ (arr (CoeqBimods ((B₄ ⊗₀ B₃) ⊗₀ B₂) B₁)
222220 ∘ᵥ arr (CoeqBimods (B₄ ⊗₀ B₃) B₂) ◁ F B₁)
223221 ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁
224- ≈⟨ glue face4[32]1⇒4321 (glue face[432]1⇒4[32]1 face[[43]2]1⇒[432]1) ⟩
222+ ≈⟨ glue face4[32]1⇒4321 (glue face[432]1⇒4[32]1 face[[43]2]1⇒[432]1) ⟩
225223
226224 ((arr (CoeqBimods B₄ (B₃ ⊗₀ B₂ ⊗₀ B₁))
227225 ∘ᵥ F B₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁)))
228226 ∘ᵥ F B₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
229227 ∘ᵥ F B₄ ▷ α⇒ {f = F B₃} {F B₂} {F B₁}
230228 ∘ᵥ α⇒ {f = F B₄} {F B₃ ∘₁ F B₂} {F B₁}
231229 ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂} ◁ F B₁
232- ≈⟨ refl⟩∘⟨ pentagon ⟩
230+ ≈⟨ refl⟩∘⟨ pentagon ⟩
233231
234232 ((arr (CoeqBimods B₄ (B₃ ⊗₀ B₂ ⊗₀ B₁))
235233 ∘ᵥ F B₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁)))
236234 ∘ᵥ F B₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
237235 ∘ᵥ α⇒ {f = F B₄} {F B₃} {F B₂ ∘₁ F B₁}
238236 ∘ᵥ α⇒ {f = F B₄ ∘₁ F B₃} {F B₂} {F B₁}
239- ≈⟨ ⟺ (glue face[43]21⇒4321 face[[43]2]1⇒[43]21) ⟩
237+ ≈⟨ ⟺ (glue face[43]21⇒4321 face[[43]2]1⇒[43]21) ⟩
240238
241239 (α (associator-⊗-from {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁})
242240 ∘ᵥ α (associator-⊗-from {B₃ = B₄ ⊗₀ B₃} {B₂} {B₁}))
243241 ∘ᵥ (arr (CoeqBimods ((B₄ ⊗₀ B₃) ⊗₀ B₂) B₁)
244242 ∘ᵥ arr (CoeqBimods (B₄ ⊗₀ B₃) B₂) ◁ F B₁)
245243 ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁
246- ≈⟨ assoc²δα ⟩
244+ ≈⟨ assoc²δα ⟩
247245
248246 (((α (associator-⊗-from {B₃ = B₄} {B₃} {B₂ ⊗₀ B₁})
249247 ∘ᵥ α (associator-⊗-from {B₃ = B₄ ⊗₀ B₃} {B₂} {B₁}))
250248 ∘ᵥ arr (CoeqBimods ((B₄ ⊗₀ B₃) ⊗₀ B₂) B₁))
251249 ∘ᵥ arr (CoeqBimods (B₄ ⊗₀ B₃) B₂) ◁ F B₁)
252- ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁ ∎
250+ ∘ᵥ arr (CoeqBimods B₄ B₃) ◁ F B₂ ◁ F B₁ ∎
253251
254252 where
255253 open hom.HomReasoning
0 commit comments