@@ -56,51 +56,54 @@ open Left-Unitor using (unitorˡ-⊗-from) renaming (triangle to unitorˡ-triang
5656open Right-Unitor using (unitorʳ-⊗-from) renaming (triangle to unitorʳ-triangle)
5757
5858abstract
59- triangle-⊗-∘arr² : ((α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
60- ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
61- ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
62- ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
63- ≈ (α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
64- ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
65- ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
59+ triangle-⊗-∘arr² :
60+ ((α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
61+ ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
62+ ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
63+ ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
64+ ≈
65+ (α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
66+ ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
67+ ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
68+
6669 triangle-⊗-∘arr² = begin
6770
6871 ((α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
6972 ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
7073 ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
7174 ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
72- ≈⟨ assoc₂ ⟩
75+ ≈⟨ assoc₂ ⟩
7376
7477 (α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
7578 ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
7679 ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
7780 ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
78- ≈⟨ extendˡ (⟺ (hexagon-sq {B₃ = B₂} {Id-Bimod} {B₁})) ⟩
81+ ≈⟨ extendˡ (⟺ (hexagon-sq {B₃ = B₂} {Id-Bimod} {B₁})) ⟩
7982
8083 (α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
8184 ∘ᵥ (arr (CoeqBimods B₂ (Id-Bimod ⊗₀ B₁))
8285 ∘ᵥ F B₂ ▷ arr (CoeqBimods Id-Bimod B₁)))
8386 ∘ᵥ α⇒ {f = F B₂} {T M₂} {F B₁}
84- ≈⟨ ⟺ (pullˡ associator-∘⇒unitor-⊗) ⟩
87+ ≈⟨ ⟺ (pullˡ associator-∘⇒unitor-⊗) ⟩
8588
8689 (arr (CoeqBimods B₂ B₁)
8790 ∘ᵥ actionˡ B₂ ◁ F B₁)
8891 ∘ᵥ α⇐ {f = F B₂} {T M₂} {F B₁}
8992 ∘ᵥ α⇒ {f = F B₂} {T M₂} {F B₁}
90- ≈⟨ elimʳ associator.isoˡ ⟩
93+ ≈⟨ elimʳ associator.isoˡ ⟩
9194
9295 arr (CoeqBimods B₂ B₁)
9396 ∘ᵥ actionˡ B₂ ◁ F B₁
94- ≈⟨ id⇒unitor-⊗ ⟩
97+ ≈⟨ id⇒unitor-⊗ ⟩
9598
9699 α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
97100 ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
98101 ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁
99- ≈⟨ ⟺ assoc₂ ⟩
102+ ≈⟨ ⟺ assoc₂ ⟩
100103
101104 (α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
102105 ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
103- ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁ ∎
106+ ∘ᵥ arr (CoeqBimods B₂ Id-Bimod) ◁ F B₁ ∎
104107
105108 where
106109 open hom.HomReasoning
@@ -124,8 +127,7 @@ abstract
124127 ∘ᵥ α⇐ {f = F B₂} {T M₂} {F B₁} ≈⟨ ⟺ (equality (CoeqBimods B₂ B₁)) ⟩
125128
126129 arr (CoeqBimods B₂ B₁)
127- ∘ᵥ F B₂ ▷ actionʳ B₁ ≈⟨ ⟺ (glue▹◽ (▷-resp-tri unitorˡ-triangle) (⟺ (αSq-⊗ id-bimodule-hom unitorˡ-⊗-from)))
128- ⟩
130+ ∘ᵥ F B₂ ▷ actionʳ B₁ ≈⟨ ⟺ (glue▹◽ (▷-resp-tri unitorˡ-triangle) (⟺ (αSq-⊗ id-bimodule-hom unitorˡ-⊗-from))) ⟩
129131
130132 α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from)
131133 ∘ᵥ arr (CoeqBimods B₂ (Id-Bimod ⊗₀ B₁))
@@ -141,28 +143,26 @@ abstract
141143
142144 id⇒unitor-⊗ = ⟺ (glue▹◽ (◁-resp-tri unitorʳ-triangle) (⟺ (αSq-⊗ unitorʳ-⊗-from id-bimodule-hom)))
143145
144- triangle-⊗-∘arr : (α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
145- ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
146- ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
147- ≈ α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
148- ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
146+
147+ triangle-⊗-∘arr :
148+ (α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
149+ ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁}))
150+ ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
151+ ≈
152+ α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
153+ ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
149154
150155 triangle-⊗-∘arr = Coequalizer⇒Epi
151- ((CoeqBimods B₂ Id-Bimod) coeq-◁ F B₁)
152- ((α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from)
153- ∘ᵥ α associator-⊗-from)
154- ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
155- (α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom)
156- ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
157- triangle-⊗-∘arr²
156+ ((CoeqBimods B₂ Id-Bimod) coeq-◁ F B₁)
157+ ((α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from) ∘ᵥ α associator-⊗-from) ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
158+ (α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom) ∘ᵥ arr (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁))
159+ triangle-⊗-∘arr²
158160
159- triangle-⊗ : α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁})
160- ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁})
161- ≈ α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
161+ triangle-⊗ : α (id-bimodule-hom {B = B₂} ⊗₁ unitorˡ-⊗-from {B = B₁}) ∘ᵥ α (associator-⊗-from {B₃ = B₂} {Id-Bimod} {B₁})
162+ ≈ α (unitorʳ-⊗-from {B = B₂} ⊗₁ id-bimodule-hom {B = B₁})
162163
163164 triangle-⊗ = Coequalizer⇒Epi
164- (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
165- (α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from)
166- ∘ᵥ α associator-⊗-from)
167- (α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom))
168- triangle-⊗-∘arr
165+ (CoeqBimods (B₂ ⊗₀ Id-Bimod) B₁)
166+ (α (id-bimodule-hom ⊗₁ unitorˡ-⊗-from) ∘ᵥ α associator-⊗-from)
167+ (α (unitorʳ-⊗-from ⊗₁ id-bimodule-hom))
168+ triangle-⊗-∘arr
0 commit comments