Skip to content

Commit f0445dc

Browse files
committed
Make notation consistent with Associator.agda
1 parent ba364c1 commit f0445dc

File tree

1 file changed

+66
-66
lines changed
  • src/Categories/Bicategory/Construction/Bimodules/Tensorproduct

1 file changed

+66
-66
lines changed

src/Categories/Bicategory/Construction/Bimodules/Tensorproduct/Unitor.agda

Lines changed: 66 additions & 66 deletions
Original file line numberDiff line numberDiff line change
@@ -116,38 +116,38 @@ module Left-Unitor where
116116
FCoequalizer : Coequalizer act-to-the-left act-to-the-right
117117
FCoequalizer = IsCoequalizer⇒Coequalizer FisCoequalizer
118118

119-
Unitorˡ⊗Iso : F (Id-Bimod ⊗₀ B) ≅ F B
120-
Unitorˡ⊗Iso = up-to-iso (CoeqBimods Id-Bimod B) FCoequalizer
119+
unitorˡ-⊗-iso : F (Id-Bimod ⊗₀ B) ≅ F B
120+
unitorˡ-⊗-iso = up-to-iso (CoeqBimods Id-Bimod B) FCoequalizer
121121

122-
λ⇒⊗ : F (Id-Bimod ⊗₀ B) ⇒₂ F B
123-
λ⇒⊗ = _≅_.from Unitorˡ⊗Iso
122+
λ⇒-: F (Id-Bimod ⊗₀ B) ⇒₂ F B
123+
λ⇒-= _≅_.from unitorˡ-⊗-iso
124124

125-
triangle : λ⇒⊗ ∘ᵥ arr (CoeqBimods Id-Bimod B) ≈ actionʳ B
125+
triangle : λ⇒-⊗ ∘ᵥ arr (CoeqBimods Id-Bimod B) ≈ actionʳ B
126126
triangle = up-to-iso-triangle (CoeqBimods Id-Bimod B) FCoequalizer
127127

128-
open 2-cell using (λ⇒⊗; triangle) public
128+
open 2-cell using (λ⇒-⊗; triangle) public
129129

130130
module Linear-Left where
131131

132132
abstract
133-
linearˡ∘arr : (actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
134-
≈ (λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
135-
linearˡ∘arr = begin
136-
(actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc B)) (◁-resp-tri triangle) ⟩
133+
linearˡ-∘arr : (actionˡ B ∘ᵥ λ⇒-⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
134+
≈ (λ⇒-⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
135+
linearˡ-∘arr = begin
136+
(actionˡ B ∘ᵥ λ⇒-⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc B)) (◁-resp-tri triangle) ⟩
137137
actionʳ B ∘ᵥ actionˡ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionˡSq-⊗)) ⟩
138-
(λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ∎
138+
(λ⇒-⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ∎
139139
where
140140
open hom.HomReasoning
141141
open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
142142
open TensorproductOfBimodules.Left-Action Id-Bimod B using (actionˡSq-⊗; actionˡ-∘)
143143
-- actionˡ-∘ = T M₂ ▷ actionˡ B ∘ᵥ α⇒ --
144144

145-
linearˡ : actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁ ≈ λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)
145+
linearˡ : actionˡ B ∘ᵥ λ⇒-⊗ ◁ T M₁ ≈ λ⇒-⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)
146146
linearˡ = Coequalizer⇒Epi
147147
((CoeqBimods Id-Bimod B) coeq-◁ T M₁)
148-
(actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁)
149-
(λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B))
150-
linearˡ∘arr
148+
(actionˡ B ∘ᵥ λ⇒-⊗ ◁ T M₁)
149+
(λ⇒-⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B))
150+
linearˡ-∘arr
151151
where
152152
open LocalCoequalizers localCoeq
153153
-- end abstract --
@@ -156,44 +156,44 @@ module Left-Unitor where
156156
module Linear-Right where
157157

158158
abstract
159-
linearʳ∘arr : (actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
160-
≈ (λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
161-
linearʳ∘arr = begin
162-
(actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ≈⟨ glue◽▹ (⟺ (assoc-actionʳ B)) (▷-resp-tri triangle) ⟩
159+
linearʳ-∘arr : (actionʳ B ∘ᵥ T M₂ ▷ λ⇒-⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
160+
≈ (λ⇒-⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
161+
linearʳ-∘arr = begin
162+
(actionʳ B ∘ᵥ T M₂ ▷ λ⇒-⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ≈⟨ glue◽▹ (⟺ (assoc-actionʳ B)) (▷-resp-tri triangle) ⟩
163163
actionʳ B ∘ᵥ actionʳ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionʳSq-⊗)) ⟩
164-
(λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ∎
164+
(λ⇒-⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ∎
165165
where
166166
open hom.HomReasoning
167167
open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
168168
open TensorproductOfBimodules.Right-Action Id-Bimod B using (actionʳSq-⊗; actionʳ-∘)
169169
-- actionʳ-∘ = μ M₂ ◁ F B ∘ᵥ α⇐ --
170170

171-
linearʳ : actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗ ≈ λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)
171+
linearʳ : actionʳ B ∘ᵥ T M₂ ▷ λ⇒-⊗ ≈ λ⇒-⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)
172172
linearʳ = Coequalizer⇒Epi
173173
(T M₂ ▷-coeq (CoeqBimods Id-Bimod B))
174-
(actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗)
175-
(λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B))
176-
linearʳ∘arr
174+
(actionʳ B ∘ᵥ T M₂ ▷ λ⇒-⊗)
175+
(λ⇒-⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B))
176+
linearʳ-∘arr
177177
where
178178
open LocalCoequalizers localCoeq
179179
-- end abstract --
180180

181181

182-
Unitorˡ⊗From : Bimodulehomomorphism (Id-Bimod ⊗₀ B) B
183-
Unitorˡ⊗From = record
184-
{ α = λ⇒⊗
182+
unitorˡ-⊗-from : Bimodulehomomorphism (Id-Bimod ⊗₀ B) B
183+
unitorˡ-⊗-from = record
184+
{ α = λ⇒-
185185
; linearˡ = Linear-Left.linearˡ
186186
; linearʳ = Linear-Right.linearʳ
187187
}
188188

189-
Unitorˡ: Id-Bimod ⊗₀ B ≅ B
190-
Unitorˡ= αisIso⇒Iso Unitorˡ⊗From λ⇒⊗isIso
189+
unitorˡ-: Id-Bimod ⊗₀ B ≅ B
190+
unitorˡ-= αisIso⇒Iso unitorˡ-⊗-from λ⇒-⊗isIso
191191
where
192192
open Categories.Category.Construction.Bimodules.Properties.Bimodule-Isomorphism using (αisIso⇒Iso)
193-
λ⇒⊗isIso : IsIso λ⇒⊗
194-
λ⇒⊗isIso = record
195-
{ inv = _≅_.to 2-cell.Unitorˡ⊗Iso
196-
; iso = _≅_.iso 2-cell.Unitorˡ⊗Iso
193+
λ⇒-⊗isIso : IsIso λ⇒-
194+
λ⇒-⊗isIso = record
195+
{ inv = _≅_.to 2-cell.unitorˡ-⊗-iso
196+
; iso = _≅_.iso 2-cell.unitorˡ-⊗-iso
197197
}
198198

199199

@@ -260,81 +260,81 @@ module Right-Unitor where
260260
FCoequalizer : Coequalizer act-to-the-left act-to-the-right
261261
FCoequalizer = IsCoequalizer⇒Coequalizer FisCoequalizer
262262

263-
Unitorʳ⊗Iso : F (B ⊗₀ Id-Bimod) ≅ F B
264-
Unitorʳ⊗Iso = up-to-iso (CoeqBimods B Id-Bimod) FCoequalizer
263+
unitorʳ-⊗-iso : F (B ⊗₀ Id-Bimod) ≅ F B
264+
unitorʳ-⊗-iso = up-to-iso (CoeqBimods B Id-Bimod) FCoequalizer
265265

266-
ρ⇒⊗ : F (B ⊗₀ Id-Bimod) ⇒₂ F B
267-
ρ⇒⊗ = _≅_.from Unitorʳ⊗Iso
266+
ρ⇒-: F (B ⊗₀ Id-Bimod) ⇒₂ F B
267+
ρ⇒-= _≅_.from unitorʳ-⊗-iso
268268

269-
triangle : ρ⇒⊗ ∘ᵥ arr (CoeqBimods B Id-Bimod) ≈ actionˡ B
269+
triangle : ρ⇒-⊗ ∘ᵥ arr (CoeqBimods B Id-Bimod) ≈ actionˡ B
270270
triangle = up-to-iso-triangle (CoeqBimods B Id-Bimod) FCoequalizer
271271

272-
open 2-cell using (ρ⇒⊗; triangle) public
272+
open 2-cell using (ρ⇒-⊗; triangle) public
273273

274274
module Linear-Left where
275275

276276
abstract
277-
linearˡ∘arr : (actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
278-
≈ (ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
279-
linearˡ∘arr = begin
280-
(actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc-actionˡ B)) (◁-resp-tri triangle) ⟩
277+
linearˡ-∘arr : (actionˡ B ∘ᵥ ρ⇒-⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
278+
≈ (ρ⇒-⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
279+
linearˡ-∘arr = begin
280+
(actionˡ B ∘ᵥ ρ⇒-⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc-actionˡ B)) (◁-resp-tri triangle) ⟩
281281
actionˡ B ∘ᵥ actionˡ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionˡSq-⊗)) ⟩
282-
(ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ∎
282+
(ρ⇒-⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ∎
283283
where
284284
open hom.HomReasoning
285285
open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
286286
open TensorproductOfBimodules.Left-Action B Id-Bimod using (actionˡSq-⊗; actionˡ-∘)
287287
-- actionˡ-∘ = F B ▷ μ M₁ ∘ᵥ α⇒ --
288288

289-
linearˡ : actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁ ≈ ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)
289+
linearˡ : actionˡ B ∘ᵥ ρ⇒-⊗ ◁ T M₁ ≈ ρ⇒-⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)
290290
linearˡ = Coequalizer⇒Epi
291291
((CoeqBimods B Id-Bimod) coeq-◁ T M₁)
292-
(actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁)
293-
(ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod))
294-
linearˡ∘arr
292+
(actionˡ B ∘ᵥ ρ⇒-⊗ ◁ T M₁)
293+
(ρ⇒-⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod))
294+
linearˡ-∘arr
295295
where
296296
open LocalCoequalizers localCoeq
297297
-- end abstract --
298298

299299
module Linear-Right where
300300

301301
abstract
302-
linearʳ∘arr : (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
303-
≈ (ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
304-
linearʳ∘arr = begin
305-
(actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ≈⟨ glue◽▹ (⟺ (sym-assoc B)) (▷-resp-tri triangle) ⟩
302+
linearʳ-∘arr : (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒-⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
303+
≈ (ρ⇒-⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
304+
linearʳ-∘arr = begin
305+
(actionʳ B ∘ᵥ T M₂ ▷ ρ⇒-⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ≈⟨ glue◽▹ (⟺ (sym-assoc B)) (▷-resp-tri triangle) ⟩
306306
actionˡ B ∘ᵥ actionʳ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionʳSq-⊗)) ⟩
307-
(ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ∎
307+
(ρ⇒-⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ∎
308308
where
309309
open hom.HomReasoning
310310
open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
311311
open TensorproductOfBimodules.Right-Action B Id-Bimod using (actionʳSq-⊗; actionʳ-∘)
312312
-- actionʳ-∘ = actionʳ B ◁ T M₁ ∘ᵥ α⇐ --
313313

314-
linearʳ : actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗ ≈ ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)
314+
linearʳ : actionʳ B ∘ᵥ T M₂ ▷ ρ⇒-⊗ ≈ ρ⇒-⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)
315315
linearʳ = Coequalizer⇒Epi
316316
(T M₂ ▷-coeq (CoeqBimods B Id-Bimod))
317-
(actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗)
318-
(ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod))
319-
linearʳ∘arr
317+
(actionʳ B ∘ᵥ T M₂ ▷ ρ⇒-⊗)
318+
(ρ⇒-⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod))
319+
linearʳ-∘arr
320320
where
321321
open LocalCoequalizers localCoeq
322322
-- end abstract --
323323

324324

325-
Unitorʳ⊗From : Bimodulehomomorphism (B ⊗₀ Id-Bimod) B
326-
Unitorʳ⊗From = record
327-
{ α = ρ⇒⊗
325+
unitorʳ-⊗-from : Bimodulehomomorphism (B ⊗₀ Id-Bimod) B
326+
unitorʳ-⊗-from = record
327+
{ α = ρ⇒-
328328
; linearˡ = Linear-Left.linearˡ
329329
; linearʳ = Linear-Right.linearʳ
330330
}
331331

332-
Unitorʳ: B ⊗₀ Id-Bimod ≅ B
333-
Unitorʳ= αisIso⇒Iso Unitorʳ⊗From ρ⇒⊗isIso
332+
unitorʳ-: B ⊗₀ Id-Bimod ≅ B
333+
unitorʳ-= αisIso⇒Iso unitorʳ-⊗-from ρ⇒-⊗isIso
334334
where
335335
open Categories.Category.Construction.Bimodules.Properties.Bimodule-Isomorphism using (αisIso⇒Iso)
336-
ρ⇒⊗isIso : IsIso ρ⇒⊗
337-
ρ⇒⊗isIso = record
338-
{ inv = _≅_.to 2-cell.Unitorʳ⊗Iso
339-
; iso = _≅_.iso 2-cell.Unitorʳ⊗Iso
336+
ρ⇒-⊗isIso : IsIso ρ⇒-
337+
ρ⇒-⊗isIso = record
338+
{ inv = _≅_.to 2-cell.unitorʳ-⊗-iso
339+
; iso = _≅_.iso 2-cell.unitorʳ-⊗-iso
340340
}

0 commit comments

Comments
 (0)