@@ -116,38 +116,38 @@ module Left-Unitor where
116116 FCoequalizer : Coequalizer act-to-the-left act-to-the-right
117117 FCoequalizer = IsCoequalizer⇒Coequalizer FisCoequalizer
118118
119- Unitorˡ⊗Iso : F (Id-Bimod ⊗₀ B) ≅ F B
120- Unitorˡ⊗Iso = up-to-iso (CoeqBimods Id-Bimod B) FCoequalizer
119+ unitorˡ-⊗-iso : F (Id-Bimod ⊗₀ B) ≅ F B
120+ unitorˡ-⊗-iso = up-to-iso (CoeqBimods Id-Bimod B) FCoequalizer
121121
122- λ⇒⊗ : F (Id-Bimod ⊗₀ B) ⇒₂ F B
123- λ⇒⊗ = _≅_.from Unitorˡ⊗Iso
122+ λ⇒- ⊗ : F (Id-Bimod ⊗₀ B) ⇒₂ F B
123+ λ⇒- ⊗ = _≅_.from unitorˡ-⊗-iso
124124
125- triangle : λ⇒⊗ ∘ᵥ arr (CoeqBimods Id-Bimod B) ≈ actionʳ B
125+ triangle : λ⇒- ⊗ ∘ᵥ arr (CoeqBimods Id-Bimod B) ≈ actionʳ B
126126 triangle = up-to-iso-triangle (CoeqBimods Id-Bimod B) FCoequalizer
127127
128- open 2-cell using (λ⇒⊗; triangle) public
128+ open 2-cell using (λ⇒- ⊗; triangle) public
129129
130130 module Linear-Left where
131131
132132 abstract
133- linearˡ∘arr : (actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
134- ≈ (λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
135- linearˡ∘arr = begin
136- (actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc B)) (◁-resp-tri triangle) ⟩
133+ linearˡ- ∘arr : (actionˡ B ∘ᵥ λ⇒- ⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
134+ ≈ (λ⇒- ⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁
135+ linearˡ- ∘arr = begin
136+ (actionˡ B ∘ᵥ λ⇒- ⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc B)) (◁-resp-tri triangle) ⟩
137137 actionʳ B ∘ᵥ actionˡ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionˡSq-⊗)) ⟩
138- (λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ∎
138+ (λ⇒- ⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)) ∘ᵥ arr (CoeqBimods Id-Bimod B) ◁ T M₁ ∎
139139 where
140140 open hom.HomReasoning
141141 open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
142142 open TensorproductOfBimodules.Left-Action Id-Bimod B using (actionˡSq-⊗; actionˡ-∘)
143143 -- actionˡ-∘ = T M₂ ▷ actionˡ B ∘ᵥ α⇒ --
144144
145- linearˡ : actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁ ≈ λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)
145+ linearˡ : actionˡ B ∘ᵥ λ⇒- ⊗ ◁ T M₁ ≈ λ⇒- ⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B)
146146 linearˡ = Coequalizer⇒Epi
147147 ((CoeqBimods Id-Bimod B) coeq-◁ T M₁)
148- (actionˡ B ∘ᵥ λ⇒⊗ ◁ T M₁)
149- (λ⇒⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B))
150- linearˡ∘arr
148+ (actionˡ B ∘ᵥ λ⇒- ⊗ ◁ T M₁)
149+ (λ⇒- ⊗ ∘ᵥ actionˡ (Id-Bimod ⊗₀ B))
150+ linearˡ- ∘arr
151151 where
152152 open LocalCoequalizers localCoeq
153153 -- end abstract --
@@ -156,44 +156,44 @@ module Left-Unitor where
156156 module Linear-Right where
157157
158158 abstract
159- linearʳ∘arr : (actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
160- ≈ (λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
161- linearʳ∘arr = begin
162- (actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ≈⟨ glue◽▹ (⟺ (assoc-actionʳ B)) (▷-resp-tri triangle) ⟩
159+ linearʳ- ∘arr : (actionʳ B ∘ᵥ T M₂ ▷ λ⇒- ⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
160+ ≈ (λ⇒- ⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B)
161+ linearʳ- ∘arr = begin
162+ (actionʳ B ∘ᵥ T M₂ ▷ λ⇒- ⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ≈⟨ glue◽▹ (⟺ (assoc-actionʳ B)) (▷-resp-tri triangle) ⟩
163163 actionʳ B ∘ᵥ actionʳ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionʳSq-⊗)) ⟩
164- (λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ∎
164+ (λ⇒- ⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)) ∘ᵥ T M₂ ▷ arr (CoeqBimods Id-Bimod B) ∎
165165 where
166166 open hom.HomReasoning
167167 open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
168168 open TensorproductOfBimodules.Right-Action Id-Bimod B using (actionʳSq-⊗; actionʳ-∘)
169169 -- actionʳ-∘ = μ M₂ ◁ F B ∘ᵥ α⇐ --
170170
171- linearʳ : actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗ ≈ λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)
171+ linearʳ : actionʳ B ∘ᵥ T M₂ ▷ λ⇒- ⊗ ≈ λ⇒- ⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B)
172172 linearʳ = Coequalizer⇒Epi
173173 (T M₂ ▷-coeq (CoeqBimods Id-Bimod B))
174- (actionʳ B ∘ᵥ T M₂ ▷ λ⇒⊗)
175- (λ⇒⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B))
176- linearʳ∘arr
174+ (actionʳ B ∘ᵥ T M₂ ▷ λ⇒- ⊗)
175+ (λ⇒- ⊗ ∘ᵥ actionʳ (Id-Bimod ⊗₀ B))
176+ linearʳ- ∘arr
177177 where
178178 open LocalCoequalizers localCoeq
179179 -- end abstract --
180180
181181
182- Unitorˡ⊗From : Bimodulehomomorphism (Id-Bimod ⊗₀ B) B
183- Unitorˡ⊗From = record
184- { α = λ⇒⊗
182+ unitorˡ-⊗-from : Bimodulehomomorphism (Id-Bimod ⊗₀ B) B
183+ unitorˡ-⊗-from = record
184+ { α = λ⇒- ⊗
185185 ; linearˡ = Linear-Left.linearˡ
186186 ; linearʳ = Linear-Right.linearʳ
187187 }
188188
189- Unitorˡ ⊗ : Id-Bimod ⊗₀ B ≅ B
190- Unitorˡ ⊗ = αisIso⇒Iso Unitorˡ⊗From λ⇒⊗isIso
189+ unitorˡ- ⊗ : Id-Bimod ⊗₀ B ≅ B
190+ unitorˡ- ⊗ = αisIso⇒Iso unitorˡ-⊗-from λ⇒- ⊗isIso
191191 where
192192 open Categories.Category.Construction.Bimodules.Properties.Bimodule-Isomorphism using (αisIso⇒Iso)
193- λ⇒⊗isIso : IsIso λ⇒⊗
194- λ⇒⊗isIso = record
195- { inv = _≅_.to 2-cell.Unitorˡ⊗Iso
196- ; iso = _≅_.iso 2-cell.Unitorˡ⊗Iso
193+ λ⇒- ⊗isIso : IsIso λ⇒- ⊗
194+ λ⇒- ⊗isIso = record
195+ { inv = _≅_.to 2-cell.unitorˡ-⊗-iso
196+ ; iso = _≅_.iso 2-cell.unitorˡ-⊗-iso
197197 }
198198
199199
@@ -260,81 +260,81 @@ module Right-Unitor where
260260 FCoequalizer : Coequalizer act-to-the-left act-to-the-right
261261 FCoequalizer = IsCoequalizer⇒Coequalizer FisCoequalizer
262262
263- Unitorʳ⊗Iso : F (B ⊗₀ Id-Bimod) ≅ F B
264- Unitorʳ⊗Iso = up-to-iso (CoeqBimods B Id-Bimod) FCoequalizer
263+ unitorʳ-⊗-iso : F (B ⊗₀ Id-Bimod) ≅ F B
264+ unitorʳ-⊗-iso = up-to-iso (CoeqBimods B Id-Bimod) FCoequalizer
265265
266- ρ⇒⊗ : F (B ⊗₀ Id-Bimod) ⇒₂ F B
267- ρ⇒⊗ = _≅_.from Unitorʳ⊗Iso
266+ ρ⇒- ⊗ : F (B ⊗₀ Id-Bimod) ⇒₂ F B
267+ ρ⇒- ⊗ = _≅_.from unitorʳ-⊗-iso
268268
269- triangle : ρ⇒⊗ ∘ᵥ arr (CoeqBimods B Id-Bimod) ≈ actionˡ B
269+ triangle : ρ⇒- ⊗ ∘ᵥ arr (CoeqBimods B Id-Bimod) ≈ actionˡ B
270270 triangle = up-to-iso-triangle (CoeqBimods B Id-Bimod) FCoequalizer
271271
272- open 2-cell using (ρ⇒⊗; triangle) public
272+ open 2-cell using (ρ⇒- ⊗; triangle) public
273273
274274 module Linear-Left where
275275
276276 abstract
277- linearˡ∘arr : (actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
278- ≈ (ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
279- linearˡ∘arr = begin
280- (actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc-actionˡ B)) (◁-resp-tri triangle) ⟩
277+ linearˡ- ∘arr : (actionˡ B ∘ᵥ ρ⇒- ⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
278+ ≈ (ρ⇒- ⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁
279+ linearˡ- ∘arr = begin
280+ (actionˡ B ∘ᵥ ρ⇒- ⊗ ◁ T M₁) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ≈⟨ glue◽▹ (⟺ (assoc-actionˡ B)) (◁-resp-tri triangle) ⟩
281281 actionˡ B ∘ᵥ actionˡ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionˡSq-⊗)) ⟩
282- (ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ∎
282+ (ρ⇒- ⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)) ∘ᵥ arr (CoeqBimods B Id-Bimod) ◁ T M₁ ∎
283283 where
284284 open hom.HomReasoning
285285 open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
286286 open TensorproductOfBimodules.Left-Action B Id-Bimod using (actionˡSq-⊗; actionˡ-∘)
287287 -- actionˡ-∘ = F B ▷ μ M₁ ∘ᵥ α⇒ --
288288
289- linearˡ : actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁ ≈ ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)
289+ linearˡ : actionˡ B ∘ᵥ ρ⇒- ⊗ ◁ T M₁ ≈ ρ⇒- ⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod)
290290 linearˡ = Coequalizer⇒Epi
291291 ((CoeqBimods B Id-Bimod) coeq-◁ T M₁)
292- (actionˡ B ∘ᵥ ρ⇒⊗ ◁ T M₁)
293- (ρ⇒⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod))
294- linearˡ∘arr
292+ (actionˡ B ∘ᵥ ρ⇒- ⊗ ◁ T M₁)
293+ (ρ⇒- ⊗ ∘ᵥ actionˡ (B ⊗₀ Id-Bimod))
294+ linearˡ- ∘arr
295295 where
296296 open LocalCoequalizers localCoeq
297297 -- end abstract --
298298
299299 module Linear-Right where
300300
301301 abstract
302- linearʳ∘arr : (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
303- ≈ (ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
304- linearʳ∘arr = begin
305- (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ≈⟨ glue◽▹ (⟺ (sym-assoc B)) (▷-resp-tri triangle) ⟩
302+ linearʳ- ∘arr : (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒- ⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
303+ ≈ (ρ⇒- ⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod)
304+ linearʳ- ∘arr = begin
305+ (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒- ⊗) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ≈⟨ glue◽▹ (⟺ (sym-assoc B)) (▷-resp-tri triangle) ⟩
306306 actionˡ B ∘ᵥ actionʳ-∘ ≈⟨ ⟺ (glue◃◽ triangle (⟺ actionʳSq-⊗)) ⟩
307- (ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ∎
307+ (ρ⇒- ⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)) ∘ᵥ T M₂ ▷ arr (CoeqBimods B Id-Bimod) ∎
308308 where
309309 open hom.HomReasoning
310310 open Categories.Morphism.Reasoning (hom (C M₁) (C M₂)) using (glue◃◽; glue◽▹)
311311 open TensorproductOfBimodules.Right-Action B Id-Bimod using (actionʳSq-⊗; actionʳ-∘)
312312 -- actionʳ-∘ = actionʳ B ◁ T M₁ ∘ᵥ α⇐ --
313313
314- linearʳ : actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗ ≈ ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)
314+ linearʳ : actionʳ B ∘ᵥ T M₂ ▷ ρ⇒- ⊗ ≈ ρ⇒- ⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod)
315315 linearʳ = Coequalizer⇒Epi
316316 (T M₂ ▷-coeq (CoeqBimods B Id-Bimod))
317- (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒⊗)
318- (ρ⇒⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod))
319- linearʳ∘arr
317+ (actionʳ B ∘ᵥ T M₂ ▷ ρ⇒- ⊗)
318+ (ρ⇒- ⊗ ∘ᵥ actionʳ (B ⊗₀ Id-Bimod))
319+ linearʳ- ∘arr
320320 where
321321 open LocalCoequalizers localCoeq
322322 -- end abstract --
323323
324324
325- Unitorʳ⊗From : Bimodulehomomorphism (B ⊗₀ Id-Bimod) B
326- Unitorʳ⊗From = record
327- { α = ρ⇒⊗
325+ unitorʳ-⊗-from : Bimodulehomomorphism (B ⊗₀ Id-Bimod) B
326+ unitorʳ-⊗-from = record
327+ { α = ρ⇒- ⊗
328328 ; linearˡ = Linear-Left.linearˡ
329329 ; linearʳ = Linear-Right.linearʳ
330330 }
331331
332- Unitorʳ ⊗ : B ⊗₀ Id-Bimod ≅ B
333- Unitorʳ ⊗ = αisIso⇒Iso Unitorʳ⊗From ρ⇒⊗isIso
332+ unitorʳ- ⊗ : B ⊗₀ Id-Bimod ≅ B
333+ unitorʳ- ⊗ = αisIso⇒Iso unitorʳ-⊗-from ρ⇒- ⊗isIso
334334 where
335335 open Categories.Category.Construction.Bimodules.Properties.Bimodule-Isomorphism using (αisIso⇒Iso)
336- ρ⇒⊗isIso : IsIso ρ⇒⊗
337- ρ⇒⊗isIso = record
338- { inv = _≅_.to 2-cell.Unitorʳ⊗Iso
339- ; iso = _≅_.iso 2-cell.Unitorʳ⊗Iso
336+ ρ⇒- ⊗isIso : IsIso ρ⇒- ⊗
337+ ρ⇒- ⊗isIso = record
338+ { inv = _≅_.to 2-cell.unitorʳ-⊗-iso
339+ ; iso = _≅_.iso 2-cell.unitorʳ-⊗-iso
340340 }
0 commit comments