Skip to content

Commit f6b517b

Browse files
committed
Write out opposite commutes explicitly
We're given the data, no need to shove more syms in there
1 parent 9ac3612 commit f6b517b

File tree

1 file changed

+13
-4
lines changed

1 file changed

+13
-4
lines changed

src/Categories/Diagram/End/Instance/NaturalTransformations.agda

Lines changed: 13 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,7 @@ open import Categories.Diagram.Wedge using (Wedge)
1818
open import Categories.Functor.Bifunctor using (reduce-×)
1919
open import Categories.Functor.Hom using (Hom[_][-,-]; Hom[_][_,_])
2020
open import Categories.Morphism.Reasoning D
21-
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
22-
open import Categories.NaturalTransformation.Dinatural using (dtHelper)
21+
open import Categories.NaturalTransformation using (NaturalTransformation)
2322

2423
open import Function.Bundles using (Func; _⟨$⟩_)
2524

@@ -41,7 +40,7 @@ naturalTransformations : End (reduce-× Hom[ D ][-,-] F.op G)
4140
naturalTransformations = record
4241
{ wedge = record
4342
{ E = Hom[ Functors C D ][ F , G ]
44-
; dinatural = dtHelper record
43+
; dinatural = record
4544
{ α = λ X record
4645
{ to = λ nt η nt X
4746
; cong = λ eq eq
@@ -51,16 +50,26 @@ naturalTransformations = record
5150
G.₁ f ∘ η nt X ≈⟨ sym-commute nt f ⟩
5251
η nt Y ∘ F.₁ f ≈⟨ pushˡ (introˡ G.identity) ⟩
5352
G.₁ id ∘ η nt Y ∘ F.₁ f ∎
53+
; op-commute = λ {X Y} f {nt} begin
54+
G.₁ id ∘ η nt Y ∘ F.₁ f ≈⟨ pullˡ (elimˡ G.identity) ⟩
55+
η nt Y ∘ F.₁ f ≈⟨ commute nt f ⟩
56+
G.₁ f ∘ η nt X ≈⟨ refl⟩∘⟨ introʳ F.identity ⟩
57+
G.₁ f ∘ η nt X ∘ F.₁ id ∎
5458
}
5559
}
5660
; factor = λ W record
57-
{ to = λ e ntHelper record
61+
{ to = λ e record
5862
{ η = λ X dinatural.α W X ⟨$⟩ e
5963
; commute = λ {X Y} f begin
6064
(dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ≈⟨ pushˡ (introˡ G.identity) ⟩
6165
G.₁ id ∘ (dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ≈⟨ dinatural.op-commute W f ⟩
6266
G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ∘ F.₁ id ≈⟨ refl⟩∘⟨ elimʳ F.identity ⟩
6367
G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ∎
68+
; sym-commute = λ {X Y} f begin
69+
G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ≈⟨ refl⟩∘⟨ introʳ F.identity ⟩
70+
G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ∘ F.₁ id ≈⟨ dinatural.commute W f ⟩
71+
G.₁ id ∘ (dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ≈⟨ pullˡ (elimˡ G.identity) ⟩
72+
(dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ∎
6473
}
6574
; cong = λ eq Func.cong (dinatural.α W _) eq
6675
}

0 commit comments

Comments
 (0)