Skip to content

Commit f8c3b07

Browse files
committed
Pull out lemmata in the proof that the associator is right linear
1 parent 07746d6 commit f8c3b07

File tree

1 file changed

+45
-8
lines changed
  • src/Categories/Bicategory/Construction/Bimodules/Tensorproduct

1 file changed

+45
-8
lines changed

src/Categories/Bicategory/Construction/Bimodules/Tensorproduct/Associator.agda

Lines changed: 45 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -521,6 +521,47 @@ module Linear-Right where
521521
open hom.HomReasoning
522522
open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue; pullˡ)
523523

524+
actionʳSq-◽∘⦃◽⊗◽⦄ : F B₃ ▷ arr (CoeqBimods B₂ B₁) ∘ᵥ actionʳ-◽∘⦃◽∘◽⦄
525+
≈ actionʳ-∘ B₃ (B₂ ⊗₀ B₁) ∘ᵥ T M₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁)
526+
actionʳSq-◽∘⦃◽⊗◽⦄ = glue′ ◁-▷-exchg (⟺ α⇐-▷-∘₁)
527+
where
528+
open hom.HomReasoning
529+
open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue′; glue)
530+
531+
actionʳSq-◽⊗⦃◽⊗◽⦄ :
532+
(arr (CoeqBimods B₃ (B₂ ⊗₀ B₁))
533+
∘ᵥ F B₃ ▷ arr (CoeqBimods B₂ B₁))
534+
∘ᵥ actionʳ-◽∘⦃◽∘◽⦄
535+
536+
(actionʳ-⊗ B₃ (B₂ ⊗₀ B₁)
537+
∘ᵥ T M₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁))
538+
∘ᵥ T M₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
539+
actionʳSq-◽⊗⦃◽⊗◽⦄ = glue (actionʳSq-⊗ B₃ (B₂ ⊗₀ B₁)) actionʳSq-◽∘⦃◽⊗◽⦄
540+
where
541+
open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue)
542+
open TensorproductOfBimodules.Right-Action using (actionʳSq-⊗)
543+
544+
actionʳSq-⦃◽⊗◽⦄∘◽ : arr (CoeqBimods B₃ B₂) ◁ F B₁ ∘ᵥ actionʳ-⦃◽∘◽⦄∘◽
545+
≈ actionʳ-∘ (B₃ ⊗₀ B₂) B₁ ∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁)
546+
actionʳSq-⦃◽⊗◽⦄∘◽ = glue′ (◁-resp-sq (actionʳSq-⊗ B₃ B₂)) (⟺ α⇐-▷-◁)
547+
where
548+
open hom.HomReasoning
549+
open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue′)
550+
open TensorproductOfBimodules.Right-Action using (actionʳSq-⊗)
551+
552+
actionʳSq-⦃◽⊗◽⦄⊗◽ :
553+
(arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
554+
∘ᵥ arr (CoeqBimods B₃ B₂) ◁ F B₁)
555+
∘ᵥ actionʳ-⦃◽∘◽⦄∘◽
556+
557+
actionʳ-⊗ (B₃ ⊗₀ B₂) B₁
558+
∘ᵥ T M₄ ▷ arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
559+
∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁)
560+
actionʳSq-⦃◽⊗◽⦄⊗◽ = glue (actionʳSq-⊗ (B₃ ⊗₀ B₂) B₁) actionʳSq-⦃◽⊗◽⦄∘◽
561+
where
562+
open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue)
563+
open TensorproductOfBimodules.Right-Action using (actionʳSq-⊗)
564+
524565
abstract
525566
linearʳ-∘arr² :
526567
((actionʳ-⊗ B₃ (B₂ ⊗₀ B₁)
@@ -593,16 +634,12 @@ module Linear-Right where
593634
α⇒-⊗
594635
∘ᵥ (arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
595636
∘ᵥ arr (CoeqBimods B₃ B₂) ◁ F B₁)
596-
∘ᵥ actionʳ-⦃◽∘◽⦄∘◽ ≈⟨ refl⟩∘⟨
597-
glue
598-
(actionʳSq-⊗ (B₃ ⊗₀ B₂) B₁)
599-
(glue′ (◁-resp-sq (actionʳSq-⊗ B₃ B₂)) (⟺ α⇐-▷-◁))
600-
637+
∘ᵥ actionʳ-⦃◽∘◽⦄∘◽ ≈⟨ pushʳ actionʳSq-⦃◽⊗◽⦄⊗◽ ⟩
601638

602-
α⇒-⊗
603-
∘ᵥ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁
639+
(α⇒-⊗
640+
∘ᵥ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁)
604641
∘ᵥ T M₄ ▷ arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
605-
∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ assoc²εα
642+
∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ assoc
606643

607644
((α⇒-⊗
608645
∘ᵥ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁)

0 commit comments

Comments
 (0)