@@ -521,6 +521,47 @@ module Linear-Right where
521521 open hom.HomReasoning
522522 open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue; pullˡ)
523523
524+ actionʳSq-◽∘⦃◽⊗◽⦄ : F B₃ ▷ arr (CoeqBimods B₂ B₁) ∘ᵥ actionʳ-◽∘⦃◽∘◽⦄
525+ ≈ actionʳ-∘ B₃ (B₂ ⊗₀ B₁) ∘ᵥ T M₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁)
526+ actionʳSq-◽∘⦃◽⊗◽⦄ = glue′ ◁-▷-exchg (⟺ α⇐-▷-∘₁)
527+ where
528+ open hom.HomReasoning
529+ open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue′; glue)
530+
531+ actionʳSq-◽⊗⦃◽⊗◽⦄ :
532+ (arr (CoeqBimods B₃ (B₂ ⊗₀ B₁))
533+ ∘ᵥ F B₃ ▷ arr (CoeqBimods B₂ B₁))
534+ ∘ᵥ actionʳ-◽∘⦃◽∘◽⦄
535+ ≈
536+ (actionʳ-⊗ B₃ (B₂ ⊗₀ B₁)
537+ ∘ᵥ T M₄ ▷ arr (CoeqBimods B₃ (B₂ ⊗₀ B₁))
538+ ∘ᵥ T M₄ ▷ F B₃ ▷ arr (CoeqBimods B₂ B₁))
539+ actionʳSq-◽⊗⦃◽⊗◽⦄ = glue (actionʳSq-⊗ B₃ (B₂ ⊗₀ B₁)) actionʳSq-◽∘⦃◽⊗◽⦄
540+ where
541+ open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue)
542+ open TensorproductOfBimodules.Right-Action using (actionʳSq-⊗)
543+
544+ actionʳSq-⦃◽⊗◽⦄∘◽ : arr (CoeqBimods B₃ B₂) ◁ F B₁ ∘ᵥ actionʳ-⦃◽∘◽⦄∘◽
545+ ≈ actionʳ-∘ (B₃ ⊗₀ B₂) B₁ ∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁)
546+ actionʳSq-⦃◽⊗◽⦄∘◽ = glue′ (◁-resp-sq (actionʳSq-⊗ B₃ B₂)) (⟺ α⇐-▷-◁)
547+ where
548+ open hom.HomReasoning
549+ open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue′)
550+ open TensorproductOfBimodules.Right-Action using (actionʳSq-⊗)
551+
552+ actionʳSq-⦃◽⊗◽⦄⊗◽ :
553+ (arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
554+ ∘ᵥ arr (CoeqBimods B₃ B₂) ◁ F B₁)
555+ ∘ᵥ actionʳ-⦃◽∘◽⦄∘◽
556+ ≈
557+ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁
558+ ∘ᵥ T M₄ ▷ arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
559+ ∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁)
560+ actionʳSq-⦃◽⊗◽⦄⊗◽ = glue (actionʳSq-⊗ (B₃ ⊗₀ B₂) B₁) actionʳSq-⦃◽⊗◽⦄∘◽
561+ where
562+ open Categories.Morphism.Reasoning (hom (C M₁) (C M₄)) using (glue)
563+ open TensorproductOfBimodules.Right-Action using (actionʳSq-⊗)
564+
524565 abstract
525566 linearʳ-∘arr² :
526567 ((actionʳ-⊗ B₃ (B₂ ⊗₀ B₁)
@@ -593,16 +634,12 @@ module Linear-Right where
593634 α⇒-⊗
594635 ∘ᵥ (arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
595636 ∘ᵥ arr (CoeqBimods B₃ B₂) ◁ F B₁)
596- ∘ᵥ actionʳ-⦃◽∘◽⦄∘◽ ≈⟨ refl⟩∘⟨
597- glue
598- (actionʳSq-⊗ (B₃ ⊗₀ B₂) B₁)
599- (glue′ (◁-resp-sq (actionʳSq-⊗ B₃ B₂)) (⟺ α⇐-▷-◁))
600- ⟩
637+ ∘ᵥ actionʳ-⦃◽∘◽⦄∘◽ ≈⟨ pushʳ actionʳSq-⦃◽⊗◽⦄⊗◽ ⟩
601638
602- α⇒-⊗
603- ∘ᵥ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁
639+ ( α⇒-⊗
640+ ∘ᵥ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁)
604641 ∘ᵥ T M₄ ▷ arr (CoeqBimods (B₃ ⊗₀ B₂) B₁)
605- ∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ assoc²εα ⟩
642+ ∘ᵥ T M₄ ▷ (arr (CoeqBimods B₃ B₂) ◁ F B₁) ≈⟨ ⟺ assoc₂ ⟩
606643
607644 ((α⇒-⊗
608645 ∘ᵥ actionʳ-⊗ (B₃ ⊗₀ B₂) B₁)
0 commit comments