Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 31 additions & 1 deletion src/Categories/Diagram/Cocone/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,9 @@ open import Categories.Category
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.NaturalTransformation
open import Categories.Diagram.Cone.Properties
open import Categories.Diagram.Cone.Properties using (F-map-Coneʳ; F-map-Cone⇒ʳ; nat-map-Cone; nat-map-Cone⇒)
open import Categories.Diagram.Duality
open import Categories.Category.Construction.Cocones using (Cocones)

import Categories.Diagram.Cocone as Coc
import Categories.Morphism.Reasoning as MR
Expand Down Expand Up @@ -45,6 +46,15 @@ module _ {F : Functor J C} (G : Functor C D) where
}
where open CF.Cocone⇒ f

mapˡ : Functor (Cocones F) (Cocones (G ∘F F))
mapˡ = record
{ F₀ = F-map-Coconeˡ
; F₁ = F-map-Cocone⇒ˡ
; identity = G.identity
; homomorphism = G.homomorphism
; F-resp-≈ = G.F-resp-≈
}

module _ {F : Functor J C} (G : Functor J′ J) where
private
module C = Category C
Expand All @@ -61,8 +71,19 @@ module _ {F : Functor J C} (G : Functor J′ J) where
F-map-Cocone⇒ʳ : ∀ {K K′} (f : CF.Cocone⇒ K K′) → CFG.Cocone⇒ (F-map-Coconeʳ K) (F-map-Coconeʳ K′)
F-map-Cocone⇒ʳ f = coCone⇒⇒Cocone⇒ C (F-map-Cone⇒ʳ G.op (Cocone⇒⇒coCone⇒ C f))

mapʳ : Functor (Cocones F) (Cocones (F ∘F G))
mapʳ = record
{ F₀ = F-map-Coconeʳ
; F₁ = F-map-Cocone⇒ʳ
; identity = C.Equiv.refl
; homomorphism = C.Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}


module _ {F G : Functor J C} (α : NaturalTransformation F G) where
private
module C = Category C
module α = NaturalTransformation α
module CF = Coc F
module CG = Coc G
Expand All @@ -72,3 +93,12 @@ module _ {F G : Functor J C} (α : NaturalTransformation F G) where

nat-map-Cocone⇒ : ∀ {K K′} (f : CG.Cocone⇒ K K′) → CF.Cocone⇒ (nat-map-Cocone K) (nat-map-Cocone K′)
nat-map-Cocone⇒ f = coCone⇒⇒Cocone⇒ C (nat-map-Cone⇒ α.op (Cocone⇒⇒coCone⇒ C f))

nat-map : Functor (Cocones G) (Cocones F)
nat-map = record
{ F₀ = nat-map-Cocone
; F₁ = nat-map-Cocone⇒
; identity = C.Equiv.refl
; homomorphism = C.Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}
28 changes: 28 additions & 0 deletions src/Categories/Diagram/Cone/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ open import Categories.Functor.Properties
open import Categories.NaturalTransformation
import Categories.Diagram.Cone as Con
import Categories.Morphism.Reasoning as MR
open import Categories.Category.Construction.Cones using (Cones)

private
variable
Expand Down Expand Up @@ -42,6 +43,15 @@ module _ {F : Functor J C} (G : Functor C D) where
}
where open CF.Cone⇒ f

mapˡ : Functor (Cones F) (Cones (G ∘F F))
mapˡ = record
{ F₀ = F-map-Coneˡ
; F₁ = F-map-Cone⇒ˡ
; identity = G.identity
; homomorphism = G.homomorphism
; F-resp-≈ = G.F-resp-≈
}

module _ {F : Functor J C} (G : Functor J′ J) where
private
module C = Category C
Expand All @@ -68,6 +78,15 @@ module _ {F : Functor J C} (G : Functor J′ J) where
}
where open CF.Cone⇒ f

mapʳ : Functor (Cones F) (Cones (F ∘F G))
mapʳ = record
{ F₀ = F-map-Coneʳ
; F₁ = F-map-Cone⇒ʳ
; identity = C.Equiv.refl
; homomorphism = C.Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}

module _ {F G : Functor J C} (α : NaturalTransformation F G) where
private
module C = Category C
Expand Down Expand Up @@ -99,3 +118,12 @@ module _ {F G : Functor J C} (α : NaturalTransformation F G) where
; commute = pullʳ commute
}
where open CF.Cone⇒ f

nat-map : Functor (Cones F) (Cones G)
nat-map = record
{ F₀ = nat-map-Cone
; F₁ = nat-map-Cone⇒
; identity = C.Equiv.refl
; homomorphism = C.Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}
Loading