@@ -15,11 +15,9 @@ open import Data.Product.Base
1515open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise
1616 using (Pointwise)
1717open import Data.Sum.Base using (inj₁; inj₂; _-⊎-_; [_,_])
18- open import Data.Empty using (⊥-elim)
1918open import Function.Base using (flip; _on_; _$_; _∘_)
2019open import Induction.WellFounded using (Acc; acc; WfRec; WellFounded; Acc-resp-flip-≈)
2120open import Level using (Level)
22- open import Relation.Nullary.Decidable using (yes; no; _⊎-dec_; _×-dec_)
2321open import Relation.Binary.Core using (Rel; _⇒_)
2422open import Relation.Binary.Bundles
2523 using (Preorder; StrictPartialOrder; StrictTotalOrder)
@@ -31,6 +29,8 @@ open import Relation.Binary.Definitions
3129 ; tri<; tri>; tri≈)
3230open import Relation.Binary.Consequences using (asym⇒irr)
3331open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_)
32+ open import Relation.Nullary.Decidable using (yes; no; _⊎-dec_; _×-dec_)
33+ open import Relation.Nullary.Negation using (contradiction)
3434
3535private
3636 variable
@@ -134,11 +134,11 @@ module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂}
134134 where
135135 antisym : Antisymmetric _≋_ _<ₗₑₓ_
136136 antisym (inj₁ x₁<y₁) (inj₁ y₁<x₁) =
137- ⊥-elim $ asym₁ x₁<y₁ y₁<x₁
137+ contradiction y₁<x₁ ( asym₁ x₁<y₁)
138138 antisym (inj₁ x₁<y₁) (inj₂ y≈≤x) =
139- ⊥-elim $ irrefl₁ (sym₁ $ proj₁ y≈≤x) x₁<y₁
139+ contradiction x₁<y₁ ( irrefl₁ (sym₁ $ proj₁ y≈≤x))
140140 antisym (inj₂ x≈≤y) (inj₁ y₁<x₁) =
141- ⊥-elim $ irrefl₁ (sym₁ $ proj₁ x≈≤y) y₁<x₁
141+ contradiction y₁<x₁ ( irrefl₁ (sym₁ $ proj₁ x≈≤y))
142142 antisym (inj₂ x≈≤y) (inj₂ y≈≤x) =
143143 proj₁ x≈≤y , antisym₂ (proj₂ x≈≤y) (proj₂ y≈≤x)
144144
0 commit comments