|
11 | 11 | {-# OPTIONS --cubical-compatible --safe #-} |
12 | 12 |
|
13 | 13 | open import Relation.Binary.Core using (Rel; _⇒_) |
14 | | -open import Relation.Binary.Structures |
15 | | - using (IsEquivalence; IsPreorder; IsStrictPartialOrder; IsPartialOrder; IsStrictTotalOrder; IsTotalOrder; IsDecTotalOrder) |
16 | | -open import Relation.Binary.Definitions |
17 | | - using (Transitive; Symmetric; Irreflexive; Antisymmetric; Trichotomous; Decidable; Trans; Total; _Respects₂_; _Respectsʳ_; _Respectsˡ_; tri<; tri≈; tri>) |
18 | 14 |
|
19 | 15 | module Relation.Binary.Construct.StrictToNonStrict |
20 | 16 | {a ℓ₁ ℓ₂} {A : Set a} |
21 | 17 | (_≈_ : Rel A ℓ₁) (_<_ : Rel A ℓ₂) |
22 | 18 | where |
23 | 19 |
|
24 | | -open import Data.Product.Base |
25 | | -open import Data.Sum.Base |
26 | | -open import Data.Empty |
27 | | -open import Function.Base |
28 | | -open import Relation.Binary.Consequences |
| 20 | +open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) |
| 21 | +open import Data.Sum.Base using (inj₁; inj₂; _⊎_; [_,_]; [_,_]′) |
| 22 | +open import Data.Empty using (⊥; ⊥-elim) |
| 23 | +open import Function.Base using (_∘_; flip; _$_) |
| 24 | +open import Relation.Binary.Consequences using (trans∧irr⇒asym) |
| 25 | +open import Relation.Binary.Structures |
| 26 | + using (IsEquivalence; IsPreorder; IsStrictPartialOrder; IsPartialOrder |
| 27 | + ; IsStrictTotalOrder; IsTotalOrder; IsDecTotalOrder) |
| 28 | +open import Relation.Binary.Definitions |
| 29 | + using (Transitive; Symmetric; Irreflexive; Antisymmetric; Trichotomous; Decidable |
| 30 | + ; Trans; Total; _Respects₂_; _Respectsʳ_; _Respectsˡ_; tri<; tri≈; tri>) |
29 | 31 | open import Relation.Nullary.Decidable using (_⊎-dec_; yes; no) |
30 | 32 |
|
31 | 33 | ------------------------------------------------------------------------ |
|
0 commit comments