|
10 | 10 | -- Relation.Nullary.Construct.Add.Supremum |
11 | 11 |
|
12 | 12 | open import Relation.Binary.Core using (Rel) |
13 | | -open import Relation.Binary.Structures |
14 | | - using (IsStrictPartialOrder; IsDecStrictPartialOrder; IsStrictTotalOrder) |
15 | | -open import Relation.Binary.Definitions |
16 | | - using (Asymmetric; Transitive; Decidable; Irrelevant; Irreflexive; Trans; Trichotomous; tri≈; tri>; tri<; _Respectsˡ_; _Respectsʳ_; _Respects₂_) |
17 | 13 |
|
18 | 14 | module Relation.Binary.Construct.Add.Supremum.Strict |
19 | 15 | {a r} {A : Set a} (_<_ : Rel A r) where |
20 | 16 |
|
21 | | -open import Level using (_⊔_) |
22 | 17 | open import Data.Product.Base using (_,_; map) |
23 | | -open import Function.Base |
24 | | -open import Relation.Nullary hiding (Irrelevant) |
25 | | -import Relation.Nullary.Decidable as Dec |
26 | | -open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; subst) |
27 | | -import Relation.Binary.PropositionalEquality.Properties as ≡ |
| 18 | +open import Function.Base using (_∘_) |
| 19 | +open import Level using (_⊔_) |
| 20 | +open import Relation.Binary.Definitions |
| 21 | + using (Asymmetric; Transitive; Decidable; Irrelevant; Irreflexive; Trans |
| 22 | + ; Trichotomous; tri≈; tri>; tri<; _Respectsˡ_; _Respectsʳ_; _Respects₂_) |
28 | 23 | open import Relation.Nullary.Construct.Add.Supremum |
| 24 | + using (⊤⁺; _⁺; [_]; ≡-dec; []-injective) |
29 | 25 | import Relation.Binary.Construct.Add.Supremum.Equality as Equality |
| 26 | + using (_≈⁺_; ⊤⁺≈⊤⁺; ≈⁺-isEquivalence; ≈⁺-dec; [≈]-injective; [_]) |
30 | 27 | import Relation.Binary.Construct.Add.Supremum.NonStrict as NonStrict |
| 28 | +open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; subst) |
| 29 | +import Relation.Binary.PropositionalEquality.Properties as ≡ |
| 30 | +open import Relation.Binary.Structures |
| 31 | + using (IsStrictPartialOrder; IsDecStrictPartialOrder; IsStrictTotalOrder) |
| 32 | +open import Relation.Nullary.Negation.Core using (¬_) |
| 33 | +open import Relation.Nullary.Decidable.Core using (yes; no) |
| 34 | +import Relation.Nullary.Decidable as Dec using (map′) |
31 | 35 |
|
32 | 36 | ------------------------------------------------------------------------ |
33 | 37 | -- Definition |
@@ -187,3 +191,4 @@ module _ {e} {_≈_ : Rel A e} where |
187 | 191 | { isStrictPartialOrder = <⁺-isStrictPartialOrder isStrictPartialOrder |
188 | 192 | ; compare = <⁺-cmp compare |
189 | 193 | } where open IsStrictTotalOrder strictot |
| 194 | + |
0 commit comments