@@ -1542,24 +1542,24 @@ p>1⇒1/p<1 {p} p>1 = lemma′ p (p>1⇒p≢0 p>1) p>1
15421542-- Basic specification in terms of _≤_
15431543
15441544p≤q⇒p⊔q≃q : p ≤ q → p ⊔ q ≃ q
1545- p≤q⇒p⊔q≃q {p@record{}} {q@record{}} p≤q with p ≤ᵇ q | inspect (p ≤ᵇ_) q
1546- ... | true | _ = ≃-refl
1547- ... | false | [ p≰q ] = contradiction (≤⇒≤ᵇ p≤q) (subst (¬_ ∘ T) (sym p≰q ) λ ())
1545+ p≤q⇒p⊔q≃q {p@record{}} {q@record{}} p≤q with p ≤ᵇ q in eq
1546+ ... | true = ≃-refl
1547+ ... | false = contradiction (≤⇒≤ᵇ p≤q) (subst (¬_ ∘ T) (sym eq ) λ ())
15481548
15491549p≥q⇒p⊔q≃p : p ≥ q → p ⊔ q ≃ p
1550- p≥q⇒p⊔q≃p {p@record{}} {q@record{}} p≥q with p ≤ᵇ q | inspect (p ≤ᵇ_) q
1551- ... | true | [ p≤q ] = ≤-antisym p≥q (≤ᵇ⇒≤ (subst T (sym p≤q ) _))
1552- ... | false | [ p≤q ] = ≃-refl
1550+ p≥q⇒p⊔q≃p {p@record{}} {q@record{}} p≥q with p ≤ᵇ q in eq
1551+ ... | true = ≤-antisym p≥q (≤ᵇ⇒≤ (subst T (sym eq ) _))
1552+ ... | false = ≃-refl
15531553
15541554p≤q⇒p⊓q≃p : p ≤ q → p ⊓ q ≃ p
1555- p≤q⇒p⊓q≃p {p@record{}} {q@record{}} p≤q with p ≤ᵇ q | inspect (p ≤ᵇ_) q
1556- ... | true | _ = ≃-refl
1557- ... | false | [ p≰q ] = contradiction (≤⇒≤ᵇ p≤q) (subst (¬_ ∘ T) (sym p≰q ) λ ())
1555+ p≤q⇒p⊓q≃p {p@record{}} {q@record{}} p≤q with p ≤ᵇ q in eq
1556+ ... | true = ≃-refl
1557+ ... | false = contradiction (≤⇒≤ᵇ p≤q) (subst (¬_ ∘ T) (sym eq ) λ ())
15581558
15591559p≥q⇒p⊓q≃q : p ≥ q → p ⊓ q ≃ q
1560- p≥q⇒p⊓q≃q {p@record{}} {q@record{}} p≥q with p ≤ᵇ q | inspect (p ≤ᵇ_) q
1561- ... | true | [ p≤q ] = ≤-antisym (≤ᵇ⇒≤ (subst T (sym p≤q ) _)) p≥q
1562- ... | false | [ p≤q ] = ≃-refl
1560+ p≥q⇒p⊓q≃q {p@record{}} {q@record{}} p≥q with p ≤ᵇ q in eq
1561+ ... | true = ≤-antisym (≤ᵇ⇒≤ (subst T (sym eq ) _)) p≥q
1562+ ... | false = ≃-refl
15631563
15641564⊓-operator : MinOperator ≤-totalPreorder
15651565⊓-operator = record
0 commit comments