|
9 | 9 | module Relation.Unary.Algebra where |
10 | 10 |
|
11 | 11 | open import Algebra.Bundles |
| 12 | + using (Magma; Semigroup; Band |
| 13 | + ; Monoid; CommutativeMonoid; IdempotentCommutativeMonoid |
| 14 | + ; SemiringWithoutAnnihilatingZero; Semiring; CommutativeSemiring) |
12 | 15 | import Algebra.Definitions as AlgebraicDefinitions |
13 | 16 | open import Algebra.Lattice.Bundles |
| 17 | + using (Semilattice; Lattice; DistributiveLattice) |
14 | 18 | import Algebra.Lattice.Structures as AlgebraicLatticeStructures |
| 19 | + using (IsLattice; IsDistributiveLattice; IsSemilattice) |
15 | 20 | import Algebra.Structures as AlgebraicStructures |
| 21 | + using (IsMagma; IsSemigroup; IsBand; IsMonoid; IsCommutativeMonoid |
| 22 | + ; IsIdempotentCommutativeMonoid; IsSemiringWithoutAnnihilatingZero |
| 23 | + ; IsSemiring; IsCommutativeSemiring) |
16 | 24 | open import Data.Empty.Polymorphic using (⊥-elim) |
17 | | -open import Data.Product.Base as Product using (_,_; proj₁; proj₂; <_,_>; curry; uncurry) |
| 25 | +open import Data.Product.Base as Product |
| 26 | + using (_,_; proj₁; proj₂; <_,_>; curry; uncurry) |
18 | 27 | open import Data.Sum.Base as Sum using (inj₁; inj₂; [_,_]) |
19 | 28 | open import Data.Unit.Polymorphic using (tt) |
20 | 29 | open import Function.Base using (id; const; _∘_) |
21 | | -open import Level |
| 30 | +open import Level using (Level; _⊔_) |
22 | 31 | open import Relation.Unary hiding (∅; U) |
23 | 32 | open import Relation.Unary.Polymorphic using (∅; U) |
24 | 33 | open import Relation.Unary.Relation.Binary.Equality using (≐-isEquivalence) |
|
0 commit comments