Skip to content

Commit 8ae063a

Browse files
[Refractor] contradiction over ⊥-elim in as def (#2660)
* [Refractor] contradiction over ⊥-elim in as def * [Refractor] contradiction over ⊥-elim in as def * Update src/Relation/Binary/Construct/StrictToNonStrict.agda Co-authored-by: jamesmckinna <31931406+jamesmckinna@users.noreply.github.com> * Narrowing --------- Co-authored-by: jamesmckinna <31931406+jamesmckinna@users.noreply.github.com>
1 parent a95d11c commit 8ae063a

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

src/Relation/Binary/Construct/StrictToNonStrict.agda

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,8 @@ open import Relation.Binary.Structures
2828
open import Relation.Binary.Definitions
2929
using (Transitive; Symmetric; Irreflexive; Antisymmetric; Trichotomous; Decidable
3030
; Trans; Total; _Respects₂_; _Respectsʳ_; _Respectsˡ_; tri<; tri≈; tri>)
31-
open import Relation.Nullary.Decidable using (_⊎-dec_; yes; no)
31+
open import Relation.Nullary.Decidable.Core using (_⊎-dec_; yes; no)
32+
open import Relation.Nullary.Negation.Core using (contradiction)
3233

3334
------------------------------------------------------------------------
3435
-- Conversion
@@ -59,7 +60,7 @@ antisym eq trans irrefl = as
5960
as (inj₂ x≈y) _ = x≈y
6061
as (inj₁ _) (inj₂ y≈x) = Eq.sym y≈x
6162
as (inj₁ x<y) (inj₁ y<x) =
62-
⊥-elim (trans∧irr⇒asym {_≈_ = _≈_} Eq.refl trans irrefl x<y y<x)
63+
contradiction y<x (trans∧irr⇒asym {_≈_ = _≈_} Eq.refl trans irrefl x<y)
6364

6465
trans : IsEquivalence _≈_ _<_ Respects₂ _≈_ Transitive _<_
6566
Transitive _≤_

src/Tactic/RingSolver/NonReflective.agda

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,6 @@ open import Algebra.Morphism
2121
open import Function.Base using (id; _⟨_⟩_)
2222
open import Data.Bool.Base using (Bool; true; false; T; if_then_else_)
2323
open import Data.Maybe.Base
24-
open import Data.Empty using (⊥-elim)
2524
open import Data.Nat.Base using (ℕ)
2625
open import Data.Product.Base using (_×_; proj₁; proj₂; _,_)
2726
open import Data.Vec.Base using (Vec)

0 commit comments

Comments
 (0)