@@ -58,18 +58,29 @@ Deprecated names
5858 ∤∤-respˡ-≈ ↦ ∦-respˡ-≈
5959 ∤∤-respʳ-≈ ↦ ∦-respʳ-≈
6060 ∤∤-resp-≈ ↦ ∦-resp-≈
61+ ∣-respʳ-≈ ↦ ∣ʳ-respʳ-≈
62+ ∣-respˡ-≈ ↦ ∣ʳ-respˡ-≈
63+ ∣-resp-≈ ↦ ∣ʳ-resp-≈
64+ x∣yx ↦ x∣ʳyx
65+ xy≈z⇒y∣z ↦ xy≈z⇒y∣ʳz
6166 ```
6267
6368* In ` Algebra.Properties.Monoid.Divisibility ` :
6469 ``` agda
6570 ∣∣-refl ↦ ∥-refl
6671 ∣∣-reflexive ↦ ∥-reflexive
6772 ∣∣-isEquivalence ↦ ∥-isEquivalence
73+ ε∣_ ↦ ε∣ʳ_
74+ ∣-refl ↦ ∣ʳ-refl
75+ ∣-reflexive ↦ ∣ʳ-reflexive
76+ ∣-isPreorder ↦ ∣ʳ-isPreorder
77+ ∣-preorder ↦ ∣ʳ-preorder
6878 ```
6979
7080* In ` Algebra.Properties.Semigroup.Divisibility ` :
7181 ``` agda
7282 ∣∣-trans ↦ ∥-trans
83+ ∣-trans ↦ ∣ʳ-trans
7384 ```
7485
7586* In ` Data.List.Base ` :
@@ -103,6 +114,10 @@ New modules
103114
104115* ` Data.List.Base.{sum|product} ` and their properties have been lifted out into ` Data.Nat.ListAction ` and ` Data.Nat.ListAction.Properties ` .
105116
117+ * ` Data.List.Relation.Binary.Prefix.Propositional.Properties ` showing the equivalence to left divisibility induced by the list monoid.
118+
119+ * ` Data.List.Relation.Binary.Suffix.Propositional.Properties ` showing the equivalence to right divisibility induced by the list monoid.
120+
106121* ` Data.Sign.Show ` to show a sign
107122
108123Additions to existing modules
@@ -137,6 +152,38 @@ Additions to existing modules
137152 commutativeRing : CommutativeRing c ℓ → CommutativeRing (a ⊔ c) (a ⊔ ℓ)
138153 ```
139154
155+ * In ` Algebra.Properties.Magma.Divisibility ` :
156+ ``` agda
157+ ∣ˡ-respʳ-≈ : _∣ˡ_ Respectsʳ _≈_
158+ ∣ˡ-respˡ-≈ : _∣ˡ_ Respectsˡ _≈_
159+ ∣ˡ-resp-≈ : _∣ˡ_ Respects₂ _≈_
160+ x∣ˡxy : ∀ x y → x ∣ˡ x ∙ y
161+ xy≈z⇒x∣ˡz : ∀ x y {z} → x ∙ y ≈ z → x ∣ˡ z
162+ ```
163+
164+ * In ` Algebra.Properties.Monoid.Divisibility ` :
165+ ``` agda
166+ ε∣ˡ_ : ∀ x → ε ∣ˡ x
167+ ∣ˡ-refl : Reflexive _∣ˡ_
168+ ∣ˡ-reflexive : _≈_ ⇒ _∣ˡ_
169+ ∣ˡ-isPreorder : IsPreorder _≈_ _∣ˡ_
170+ ∣ˡ-preorder : Preorder a ℓ _
171+ ```
172+
173+ * In ` Algebra.Properties.Semigroup.Divisibility ` :
174+ ``` agda
175+ ∣ˡ-trans : Transitive _∣ˡ_
176+ x∣ʳy⇒x∣ʳzy : x ∣ʳ y → x ∣ʳ z ∙ y
177+ x∣ʳy⇒xz∣ʳyz : x ∣ʳ y → x ∙ z ∣ʳ y ∙ z
178+ x∣ˡy⇒zx∣ˡzy : x ∣ˡ y → z ∙ x ∣ˡ z ∙ y
179+ x∣ˡy⇒x∣ˡyz : x ∣ˡ y → x ∣ˡ y ∙ z
180+ ```
181+
182+ * In ` Algebra.Properties.CommutativeSemigroup.Divisibility ` :
183+ ``` agda
184+ ∙-cong-∣ : x ∣ y → a ∣ b → x ∙ a ∣ y ∙ b
185+ ```
186+
140187* In ` Data.List.Properties ` :
141188 ``` agda
142189 map-applyUpTo : ∀ (f : ℕ → A) (g : A → B) n → map g (applyUpTo f n) ≡ applyUpTo (g ∘ f) n
@@ -149,3 +196,9 @@ Additions to existing modules
149196 ``` agda
150197 filter-↭ : ∀ (P? : Pred.Decidable P) → xs ↭ ys → filter P? xs ↭ filter P? ys
151198 ```
199+
200+ * In ` Relation.Nullary.Decidable.Core ` :
201+ ``` agda
202+ ⊤-dec : Dec {a} ⊤
203+ ⊥-dec : Dec {a} ⊥
204+ ```
0 commit comments