diff --git a/src/Data/List/Fresh/Relation/Unary/All/Properties.agda b/src/Data/List/Fresh/Relation/Unary/All/Properties.agda index fd02143d06..e6f1d5e556 100644 --- a/src/Data/List/Fresh/Relation/Unary/All/Properties.agda +++ b/src/Data/List/Fresh/Relation/Unary/All/Properties.agda @@ -10,12 +10,10 @@ module Data.List.Fresh.Relation.Unary.All.Properties where open import Data.List.Fresh using (List#; []; cons; _∷#_; _#_) open import Data.List.Fresh.Relation.Unary.All using (All; []; _∷_; append) -open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Product.Base using (_,_) open import Function.Base using (_∘′_) open import Level using (Level; _⊔_; Lift) -open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Unary as U using (Pred) open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong) diff --git a/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda b/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda index a89169cd68..8e016c6343 100644 --- a/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda +++ b/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda @@ -9,7 +9,6 @@ module Data.List.Fresh.Relation.Unary.Any.Properties where open import Data.Bool.Base using (true; false) -open import Data.Empty using (⊥; ⊥-elim) open import Data.List.Fresh using (List#; _∷#_; _#_; NonEmpty; cons; length; []) open import Data.List.Fresh.Relation.Unary.All using (All; _∷_; append; []) open import Data.List.Fresh.Relation.Unary.Any using (Any; here; there; _─_) @@ -19,12 +18,12 @@ open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Function.Base using (_∘′_) open import Level using (Level; _⊔_; Lift) open import Relation.Nullary.Reflects using (invert) -open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Nullary.Decidable.Core open import Relation.Unary as U using (Pred) open import Relation.Binary.Core using (Rel) open import Relation.Nary using (∀[_]; _⇒_; ∁; Decidable) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong) +open import Relation.Nullary.Negation.Core using (contradiction; ¬_) private variable @@ -56,7 +55,7 @@ module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} (P⇒¬Q : ∀[ P ⇒ ∁ Q module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} (P? : Decidable P) where ¬All⇒Any : {xs : List# A R} → ¬ (All P xs) → Any (∁ P) xs - ¬All⇒Any {xs = []} ¬ps = ⊥-elim (¬ps []) + ¬All⇒Any {xs = []} ¬ps = contradiction [] ¬ps ¬All⇒Any {xs = x ∷# xs} ¬ps with P? x ... | true because [p] = there (¬All⇒Any (¬ps ∘′ (invert [p] ∷_))) ... | false because [¬p] = here (invert [¬p]) @@ -64,7 +63,7 @@ module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} (P? : Decidable P) where ¬Any⇒All : {xs : List# A R} → ¬ (Any P xs) → All (∁ P) xs ¬Any⇒All {xs = []} ¬ps = [] ¬Any⇒All {xs = x ∷# xs} ¬ps with P? x - ... | true because [p] = ⊥-elim (¬ps (here (invert [p]))) + ... | true because [p] = contradiction (here (invert [p])) ¬ps ... | false because [¬p] = invert [¬p] ∷ ¬Any⇒All (¬ps ∘′ there) ------------------------------------------------------------------------