Skip to content

Commit 0854b15

Browse files
committed
fixes
1 parent 84f687f commit 0854b15

25 files changed

+88
-110
lines changed

Cubical/Algebra/AbGroup/FinitePresentation.agda

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
{-# OPTIONS --safe #-}
21
module Cubical.Algebra.AbGroup.FinitePresentation where
32

43
open import Cubical.Foundations.Prelude
@@ -26,8 +25,7 @@ record FinitePresentation (A : AbGroup ℓ) : Type ℓ where
2625
nGens :
2726
nRels :
2827
rels : AbGroupHom ℤ[Fin nRels ] ℤ[Fin nGens ]
29-
fpiso : GroupIso (AbGroup→Group A)
30-
(ℤ[Fin nGens ] /Im rels)
28+
fpiso : AbGroupIso A (ℤ[Fin nGens ] /Im rels)
3129

3230
isFinitelyPresented : AbGroup ℓ Type ℓ
3331
isFinitelyPresented G = ∥ FinitePresentation G ∥₁

Cubical/Algebra/AbGroup/Properties.agda

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -61,14 +61,15 @@ subtrGroupHom : (A : AbGroup ℓ) (B : AbGroup ℓ') (ϕ ψ : AbGroupHom A B)
6161
subtrGroupHom A B ϕ ψ = addGroupHom A B ϕ (negGroupHom A B ψ)
6262

6363
-- Abelian groups quotiented by image of a map
64-
_/Im_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) Group ℓ
65-
G /Im ϕ = AbGroup→Group G
66-
/ (imSubgroup ϕ , isNormalIm ϕ λ _ _ AbGroupStr.+Comm (snd G) _ _)
67-
68-
_/ᵃᵇIm_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) AbGroup ℓ
69-
G /ᵃᵇIm ϕ =
70-
Group→AbGroup (G /Im ϕ)
64+
_/Im_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) AbGroup ℓ
65+
G /Im ϕ =
66+
Group→AbGroup (G /' ϕ)
7167
(elimProp2 (λ _ _ squash/ _ _) λ a b cong [_] (AbGroupStr.+Comm (snd G) _ _))
68+
where
69+
_/'_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) Group ℓ
70+
G /' ϕ = AbGroup→Group G
71+
/ (imSubgroup ϕ , isNormalIm ϕ λ _ _ AbGroupStr.+Comm (snd G) _ _)
72+
7273

7374
-- ℤ-multiplication defines a homomorphism for abelian groups
7475
private module _ (G : AbGroup ℓ) where
@@ -112,7 +113,7 @@ snd (multₗHom G n) = makeIsGroupHom (ℤ·isHom n G)
112113

113114
-- Abelian groups quotiented by a natural number
114115
_/^_ : (G : AbGroup ℓ) (n : ℕ) AbGroup ℓ
115-
G /^ n = G /ᵃᵇIm multₗHom G (pos n)
116+
G /^ n = G /Im multₗHom G (pos n)
116117

117118
-- Torsion subgrous
118119
_[_]ₜ : (G : AbGroup ℓ) (n : ℕ) AbGroup ℓ

Cubical/CW/Homology/Groups/CofibFinSphereBouquetMap.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
{-# OPTIONS --safe --lossy-unification #-}
1+
{-# OPTIONS --lossy-unification #-}
22
{-
33
File contains : a proof that Hₙ₊₁(cofib α) ≅ ℤ[e]/Im(deg α) for
44
α : ⋁ₐ Sⁿ → ⋁ₑ Sⁿ (with a and e finite sets)

Cubical/CW/Homology/Groups/Sn.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
{-# OPTIONS --safe --lossy-unification #-}
1+
{-# OPTIONS --lossy-unification #-}
22
module Cubical.CW.Homology.Groups.Sn where
33

44
open import Cubical.Foundations.Prelude

Cubical/CW/Homology/Groups/Subcomplex.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
1-
{-# OPTIONS --safe --lossy-unification #-}
1+
{-# OPTIONS --lossy-unification #-}
22

33
{-
44
This file contains a definition of a notion of (strict)
5-
subcomplexes of a CW complex. Here, a subomplex of a complex
5+
subcomplexes of a CW complex. Here, a subcomplex of a complex
66
C = colim ( C₀ → C₁ → ...)
77
is simply the complex
88
C⁽ⁿ⁾ := colim (C₀ → ... → Cₙ = Cₙ = ...)
99
1010
This file contains.
1111
1. Definition of above
1212
2. A `strictification' of finite CW complexes in terms of above
13-
3. An elmination principle for finite CW complexes
14-
4. A proof that C and C⁽ⁿ⁾ has the same homolog in appropriate dimensions.
13+
3. An elimination principle for finite CW complexes
14+
4. A proof that C and C⁽ⁿ⁾ has the same homology in appropriate dimensions.
1515
-}
1616

1717
module Cubical.CW.Homology.Groups.Subcomplex where

Cubical/CW/HurewiczTheorem.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
{-# OPTIONS --safe --lossy-unification #-}
1+
{-# OPTIONS --lossy-unification #-}
22
{-
33
This file contains
44
1. a construction of the Hurewicz map πₙᵃᵇ(X) → H̃ᶜʷₙ(X),

Cubical/CW/Instances/Empty.agda

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
{-# OPTIONS --safe #-}
21
{-
32
The empty type as a CW complex
43
-}

Cubical/CW/Instances/Join.agda

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
{-# OPTIONS --safe #-}
21
{-
32
CW structure on joins
43
-}

Cubical/CW/Instances/Lift.agda

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
{-# OPTIONS --safe #-}
21
{-
32
Universe lifts of CW complexes
43
-}

Cubical/CW/Instances/Pushout.agda

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
{-# OPTIONS --safe #-}
21
module Cubical.CW.Instances.Pushout where
32

43
open import Cubical.Foundations.Prelude

0 commit comments

Comments
 (0)