@@ -61,14 +61,15 @@ subtrGroupHom : (A : AbGroup ℓ) (B : AbGroup ℓ') (ϕ ψ : AbGroupHom A B)
6161subtrGroupHom A B ϕ ψ = addGroupHom A B ϕ (negGroupHom A B ψ)
6262
6363-- Abelian groups quotiented by image of a map
64- _/Im_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) → Group ℓ
65- G /Im ϕ = AbGroup→Group G
66- / (imSubgroup ϕ , isNormalIm ϕ λ _ _ → AbGroupStr.+Comm (snd G) _ _)
67-
68- _/ᵃᵇIm_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) → AbGroup ℓ
69- G /ᵃᵇIm ϕ =
70- Group→AbGroup (G /Im ϕ)
64+ _/Im_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) → AbGroup ℓ
65+ G /Im ϕ =
66+ Group→AbGroup (G /' ϕ)
7167 (elimProp2 (λ _ _ → squash/ _ _) λ a b → cong [_] (AbGroupStr.+Comm (snd G) _ _))
68+ where
69+ _/'_ : {H : Group ℓ} (G : AbGroup ℓ) (ϕ : GroupHom H (AbGroup→Group G)) → Group ℓ
70+ G /' ϕ = AbGroup→Group G
71+ / (imSubgroup ϕ , isNormalIm ϕ λ _ _ → AbGroupStr.+Comm (snd G) _ _)
72+
7273
7374-- ℤ-multiplication defines a homomorphism for abelian groups
7475private module _ (G : AbGroup ℓ) where
@@ -112,7 +113,7 @@ snd (multₗHom G n) = makeIsGroupHom (ℤ·isHom n G)
112113
113114-- Abelian groups quotiented by a natural number
114115_/^_ : (G : AbGroup ℓ) (n : ℕ) → AbGroup ℓ
115- G /^ n = G /ᵃᵇIm multₗHom G (pos n)
116+ G /^ n = G /Im multₗHom G (pos n)
116117
117118-- Torsion subgrous
118119_[_]ₜ : (G : AbGroup ℓ) (n : ℕ) → AbGroup ℓ
0 commit comments