File tree Expand file tree Collapse file tree 8 files changed +49
-24
lines changed
Expand file tree Collapse file tree 8 files changed +49
-24
lines changed Original file line number Diff line number Diff line change 1+ {-# OPTIONS --safe #-}
2+ module Cubical.HITs.CauchyReals where
3+
4+ open import Cubical.HITs.CauchyReals.Base public
5+ open import Cubical.HITs.CauchyReals.Closeness public
6+ open import Cubical.HITs.CauchyReals.Lipschitz public
7+ open import Cubical.HITs.CauchyReals.Order public
8+ open import Cubical.HITs.CauchyReals.Continuous public
9+ open import Cubical.HITs.CauchyReals.Multiplication public
10+ open import Cubical.HITs.CauchyReals.Inverse public
11+ open import Cubical.HITs.CauchyReals.Sequence public
12+ open import Cubical.HITs.CauchyReals.Derivative public
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --safe -- lossy-unification #-}
22
33module Cubical.HITs.CauchyReals.Continuous where
44
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --safe -- lossy-unification #-}
22
33module Cubical.HITs.CauchyReals.Derivative where
44
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --lossy-unification --safe #-}
22
33module Cubical.HITs.CauchyReals.Inverse where
44
@@ -43,7 +43,7 @@ open import Cubical.HITs.CauchyReals.Multiplication
4343
4444Rℝ = (CR.CommRing→Ring
4545 (_ , CR.commringstr 0 1 _+ᵣ_ _·ᵣ_ -ᵣ_ IsCommRingℝ))
46-
46+ -- module CRℝ = ?
4747
4848module 𝐑 = CR.CommRingTheory (_ , CR.commringstr 0 1 _+ᵣ_ _·ᵣ_ -ᵣ_ IsCommRingℝ)
4949module 𝐑' = RP.RingTheory Rℝ
@@ -1020,6 +1020,7 @@ sign·absᵣ r = ∘diag $
10201020 ∙ cong rat (cong (ℚ._· ℚ.sign r) (sym (ℚ.abs'≡abs r))
10211021 ∙ ℚ.sign·abs r) ) r
10221022
1023+ -- HoTT Theorem (11.3.47)
10231024
10241025abstract
10251026 invℝ : ∀ r → 0 # r → ℝ
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --safe -- lossy-unification #-}
22
33module Cubical.HITs.CauchyReals.Lipschitz where
44
@@ -98,6 +98,13 @@ lim-surj = PT.map (map-snd (eqℝ _ _)) ∘ (Elimℝ-Prop.go w)
9898
9999-- TODO : (Lemma 11.3.11)
100100
101+ -- HoTT-11-3-11 : ∀ {ℓ} (A : Type ℓ) (isSetA : isSet A) →
102+ -- (f : (Σ[ x ∈ (ℚ₊ → ℝ) ] (∀ ( δ ε : ℚ₊) → x δ ∼[ δ ℚ₊+ ε ] x ε))
103+ -- → A) →
104+ -- (∀ u v → uncurry lim u ≡ uncurry lim v → f u ≡ f v)
105+ -- → ∃![ g ∈ (ℝ → A) ] f ≡ g ∘ uncurry lim
106+ -- HoTT-11-3-11 A isSetA f p =
107+ --
101108
102109Lipschitz-ℚ→ℚ : ℚ₊ → (ℚ → ℚ) → Type
103110Lipschitz-ℚ→ℚ L f =
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --safe -- lossy-unification #-}
22
33module Cubical.HITs.CauchyReals.Multiplication where
44
@@ -686,3 +686,20 @@ cont₂·ᵣWP P f g fC gC = IsContinuousWP∘' P _
686686_^ⁿ_ : ℝ → ℕ → ℝ
687687x ^ⁿ zero = 1
688688x ^ⁿ suc n = (x ^ⁿ n) ·ᵣ x
689+
690+
691+ ·absᵣ : ∀ x y → absᵣ (x ·ᵣ y) ≡ absᵣ x ·ᵣ absᵣ y
692+ ·absᵣ x = ≡Continuous _ _
693+ ((IsContinuous∘ _ _ IsContinuousAbsᵣ (IsContinuous·ᵣL x)
694+ ))
695+ (IsContinuous∘ _ _ (IsContinuous·ᵣL (absᵣ x))
696+ IsContinuousAbsᵣ)
697+ λ y' →
698+ ≡Continuous _ _
699+ ((IsContinuous∘ _ _ IsContinuousAbsᵣ (IsContinuous·ᵣR (rat y'))
700+ ))
701+ (IsContinuous∘ _ _ (IsContinuous·ᵣR (absᵣ (rat y')))
702+ IsContinuousAbsᵣ)
703+ (λ x' →
704+ cong absᵣ (sym (rat·ᵣrat _ _)) ∙∙
705+ cong rat (sym (ℚ.abs'·abs' _ _)) ∙∙ rat·ᵣrat _ _) x
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --safe -- lossy-unification #-}
22
33module Cubical.HITs.CauchyReals.Order where
44
Original file line number Diff line number Diff line change 1- {-# OPTIONS --lossy-unification #-}
1+ {-# OPTIONS --safe -- lossy-unification #-}
22
33module Cubical.HITs.CauchyReals.Sequence where
44
@@ -42,22 +42,6 @@ open import Cubical.HITs.CauchyReals.Inverse
4242
4343
4444
45- ·absᵣ : ∀ x y → absᵣ (x ·ᵣ y) ≡ absᵣ x ·ᵣ absᵣ y
46- ·absᵣ x = ≡Continuous _ _
47- ((IsContinuous∘ _ _ IsContinuousAbsᵣ (IsContinuous·ᵣL x)
48- ))
49- (IsContinuous∘ _ _ (IsContinuous·ᵣL (absᵣ x))
50- IsContinuousAbsᵣ)
51- λ y' →
52- ≡Continuous _ _
53- ((IsContinuous∘ _ _ IsContinuousAbsᵣ (IsContinuous·ᵣR (rat y'))
54- ))
55- (IsContinuous∘ _ _ (IsContinuous·ᵣR (absᵣ (rat y')))
56- IsContinuousAbsᵣ)
57- (λ x' →
58- cong absᵣ (sym (rat·ᵣrat _ _)) ∙∙
59- cong rat (sym (ℚ.abs'·abs' _ _)) ∙∙ rat·ᵣrat _ _) x
60-
6145Seq : Type
6246Seq = ℕ → ℝ
6347
@@ -554,6 +538,7 @@ isCauchyAprox f = (δ ε : ℚ₊) →
554538lim' : ∀ x → isCauchyAprox x → ℝ
555539lim' x y = lim x λ δ ε → (invEq (∼≃abs<ε _ _ _)) (y δ ε)
556540
541+ -- HoTT 11.3.49
557542
558543fromCauchySequence : ∀ s → IsCauchySequence s → ℝ
559544fromCauchySequence s ics =
@@ -586,6 +571,9 @@ fromCauchySequence s ics =
586571 (subst ((fst ε) ℚ.<_) (ℚ.+Comm _ _)
587572 (ℚ.<+ℚ₊' (fst ε) (fst ε) δ (ℚ.isRefl≤ (fst ε))))))
588573
574+
575+ -- TODO HoTT 11.3.50.
576+
589577fromCauchySequence' : ∀ s → IsCauchySequence' s → ℝ
590578fromCauchySequence' s ics =
591579 lim x y
You can’t perform that action at this time.
0 commit comments