@@ -91,8 +91,8 @@ record IsoOver {ℓ ℓ'} {A : Type ℓ}{B : Type ℓ'}
9191 field
9292 fun : mapOver (isom .fun) P Q
9393 inv : mapOver (isom .inv) Q P
94- sec : sectionOver (isom .sec) fun inv
95- ret : retractOver (isom .ret ) fun inv
94+ rightInv : sectionOver (isom .sec) fun inv
95+ leftInv : retractOver (isom .ret) fun inv
9696
9797record isIsoOver {ℓ ℓ'} {A : Type ℓ}{B : Type ℓ'}
9898 (isom : Iso A B)(P : A → Type ℓ'')(Q : B → Type ℓ''')
@@ -102,8 +102,8 @@ record isIsoOver {ℓ ℓ'} {A : Type ℓ}{B : Type ℓ'}
102102 constructor isisoover
103103 field
104104 inv : mapOver (isom .inv) Q P
105- sec : sectionOver (isom .sec) fun inv
106- ret : retractOver (isom .ret ) fun inv
105+ rightInv : sectionOver (isom .sec) fun inv
106+ leftInv : retractOver (isom .ret) fun inv
107107
108108open IsoOver
109109open isIsoOver
@@ -116,22 +116,22 @@ isIsoOver→IsoOver :
116116 → IsoOver isom P Q
117117isIsoOver→IsoOver {fun = fun} isom .fun = fun
118118isIsoOver→IsoOver {fun = fun} isom .inv = isom .inv
119- isIsoOver→IsoOver {fun = fun} isom .sec = isom .sec
120- isIsoOver→IsoOver {fun = fun} isom .ret = isom .ret
119+ isIsoOver→IsoOver {fun = fun} isom .rightInv = isom .rightInv
120+ isIsoOver→IsoOver {fun = fun} isom .leftInv = isom .leftInv
121121
122122IsoOver→isIsoOver :
123123 {isom : Iso A B}
124124 → (isom' : IsoOver isom P Q)
125125 → isIsoOver isom P Q (isom' .fun)
126126IsoOver→isIsoOver isom .inv = isom .inv
127- IsoOver→isIsoOver isom .sec = isom .sec
128- IsoOver→isIsoOver isom .ret = isom .ret
127+ IsoOver→isIsoOver isom .rightInv = isom .rightInv
128+ IsoOver→isIsoOver isom .leftInv = isom .leftInv
129129
130130invIsoOver : {isom : Iso A B} → IsoOver isom P Q → IsoOver (invIso isom) Q P
131131invIsoOver {isom = isom} isom' .fun = isom' .inv
132132invIsoOver {isom = isom} isom' .inv = isom' .fun
133- invIsoOver {isom = isom} isom' .sec = isom' .ret
134- invIsoOver {isom = isom} isom' .ret = isom' .sec
133+ invIsoOver {isom = isom} isom' .rightInv = isom' .leftInv
134+ invIsoOver {isom = isom} isom' .leftInv = isom' .rightInv
135135
136136compIsoOver :
137137 {ℓA ℓB ℓC ℓP ℓQ ℓR : Level}
@@ -145,20 +145,20 @@ compIsoOver {A = A} {B} {C} {P} {Q} {R} {isom₁} {isom₂} isoover₁ isoover
145145 w : IsoOver _ _ _
146146 w .fun _ = isoover₂ .fun _ ∘ isoover₁ .fun _
147147 w .inv _ = isoover₁ .inv _ ∘ isoover₂ .inv _
148- w .sec b q i =
148+ w .rightInv b q i =
149149 comp
150150 (λ j → R (compPath-filler (cong (isom₂ .fun) (isom₁ .sec _)) (isom₂ .sec b) j i))
151151 (λ j → λ
152152 { (i = i0) → w .fun _ (w .inv _ q)
153- ; (i = i1) → isoover₂ .sec _ q j })
154- (isoover₂ .fun _ (isoover₁ .sec _ (isoover₂ .inv _ q) i))
155- w .ret a p i =
153+ ; (i = i1) → isoover₂ .rightInv _ q j })
154+ (isoover₂ .fun _ (isoover₁ .rightInv _ (isoover₂ .inv _ q) i))
155+ w .leftInv a p i =
156156 comp
157157 (λ j → P (compPath-filler (cong (isom₁ .inv) (isom₂ .ret _)) (isom₁ .ret a) j i))
158158 (λ j → λ
159159 { (i = i0) → w .inv _ (w .fun _ p)
160- ; (i = i1) → isoover₁ .ret _ p j })
161- (isoover₁ .inv _ (isoover₂ .ret _ (isoover₁ .fun _ p) i))
160+ ; (i = i1) → isoover₁ .leftInv _ p j })
161+ (isoover₁ .inv _ (isoover₂ .leftInv _ (isoover₁ .fun _ p) i))
162162
163163
164164-- Special cases
@@ -171,8 +171,8 @@ fiberIso→IsoOver :
171171 → IsoOver idIso P Q
172172fiberIso→IsoOver isom .fun a = isom a .fun
173173fiberIso→IsoOver isom .inv b = isom b .inv
174- fiberIso→IsoOver isom .sec b = isom b .sec
175- fiberIso→IsoOver isom .ret a = isom a .ret
174+ fiberIso→IsoOver isom .rightInv b = isom b .sec
175+ fiberIso→IsoOver isom .leftInv a = isom a .ret
176176
177177-- Only half-adjoint equivalence can be lifted.
178178-- This is another clue that HAE is more natural than isomorphism.
@@ -193,14 +193,14 @@ pullbackIsoOver {A = A} {B} {P} f hae = w
193193 w : IsoOver _ _ _
194194 w .fun a = idfun _
195195 w .inv b = subst P (sym (isom .sec b))
196- w .sec b p i = subst-filler P (sym (isom .sec b)) p (~ i)
197- w .ret a p i =
196+ w .rightInv b p i = subst-filler P (sym (isom .sec b)) p (~ i)
197+ w .leftInv a p i =
198198 comp
199199 (λ j → P (hae .com a (~ j) i))
200200 (λ j → λ
201201 { (i = i0) → w .inv _ (w .fun _ p)
202202 ; (i = i1) → p })
203- (w .sec _ p i)
203+ (w .rightInv _ p i)
204204
205205
206206-- Lifting isomorphism of bases to isomorphism of families
@@ -230,8 +230,8 @@ equivOver→IsoOver {P = P} {Q = Q} e f equiv = w
230230 w : IsoOver (equivToIso e) P Q
231231 w .fun = isom .fun
232232 w .inv = isom .inv
233- w .sec = isom .sec
234- w .ret = isom .ret
233+ w .rightInv = isom .rightInv
234+ w .leftInv = isom .leftInv
235235
236236
237237-- Turn isomorphism over HAE into relative equivalence,
@@ -251,11 +251,11 @@ isoToEquivOver {A = A} {P} {Q = Q} f hae isom' a = isoToEquiv (fibiso a) .snd
251251 fibiso : (a : A) → Iso (P a) (Q (f a))
252252 fibiso a .fun = isom' .fun a
253253 fibiso a .inv x = transport (λ i → P (isom .ret a i)) (isom' .inv (f a) x)
254- fibiso a .ret x = fromPathP (isom' .ret _ _)
254+ fibiso a .ret x = fromPathP (isom' .leftInv _ _)
255255 fibiso a .sec x =
256256 sym (substCommSlice _ _ (isom' .fun) _ _)
257257 ∙ cong (λ p → subst Q p (isom' .fun _ (isom' .inv _ x))) (hae .com a)
258- ∙ fromPathP (isom' .sec _ _)
258+ ∙ fromPathP (isom' .rightInv _ _)
259259
260260
261261-- Half-adjoint equivalence over half-adjoint equivalence
@@ -285,8 +285,8 @@ isHAEquivOver→isIsoOver :
285285 → IsoOver (isHAEquiv→Iso (hae .snd)) P Q
286286isHAEquivOver→isIsoOver hae' .fun = hae' .fst
287287isHAEquivOver→isIsoOver hae' .inv = hae' .snd .inv
288- isHAEquivOver→isIsoOver hae' .ret = hae' .snd .linv
289- isHAEquivOver→isIsoOver hae' .sec = hae' .snd .rinv
288+ isHAEquivOver→isIsoOver hae' .leftInv = hae' .snd .linv
289+ isHAEquivOver→isIsoOver hae' .rightInv = hae' .snd .rinv
290290
291291
292292-- A dependent version of `isoToHAEquiv`
@@ -304,8 +304,8 @@ IsoOver→HAEquivOver {A = A} {P = P} {Q = Q} {isom = isom} isom' = w
304304
305305 f' = isom' .fun
306306 g' = isom' .inv
307- ε' = isom' .sec
308- η' = isom' .ret
307+ ε' = isom' .rightInv
308+ η' = isom' .leftInv
309309
310310 sq : _ → I → I → _
311311 sq b i j =
@@ -350,7 +350,7 @@ IsoOver→HAEquivOver {A = A} {P = P} {Q = Q} {isom = isom} isom' = w
350350
351351 w : isHAEquivOver _ _ _ _
352352 w .inv = isom' .inv
353- w .linv = isom' .ret
353+ w .linv = isom' .leftInv
354354 w .rinv b x i =
355355 comp (λ j → Q (sq b i j))
356356 (λ j → λ
0 commit comments