@@ -583,38 +583,27 @@ module _ (A : ℕ → Type ℓ) (sk+c : yieldsCombinatorialConnectedCWskel A 0)
583583 collapse₁card (suc (suc x)) = AC.card (suc (suc x))
584584
585585 collapse₁CWskel : ℕ → Type _
586- collapse₁CWskel zero = Lift ⊥
587- collapse₁CWskel (suc zero) = Lift (Fin 1 )
586+ collapse₁CWskel zero = ⊥*
587+ collapse₁CWskel (suc zero) = Unit*
588588 collapse₁CWskel (suc (suc n)) = A (suc (suc n))
589589
590590 collapse₁α : (n : ℕ)
591591 → Fin (collapse₁card n) × S⁻ n → collapse₁CWskel n
592- collapse₁α (suc zero) (x , p) = lift fzero
592+ collapse₁α (suc zero) (x , p) = tt*
593593 collapse₁α (suc (suc n)) = AC.α (2 +ℕ n)
594594
595595 connectedCWskel→ : yieldsConnectedCWskel collapse₁CWskel 0
596- fst (fst connectedCWskel→) = collapse₁card
597- fst (snd (fst connectedCWskel→)) = collapse₁α
598- fst (snd (snd (fst connectedCWskel→))) = λ ()
599- snd (snd (snd (fst connectedCWskel→))) zero =
600- isContr→Equiv (isOfHLevelLift 0 (inhProp→isContr fzero isPropFin1))
601- ((inr fzero)
602- , (λ { (inr x) j → inr (isPropFin1 fzero x j) }))
603- snd (snd (snd (fst connectedCWskel→))) (suc zero) =
604- compEquiv (invEquiv (isoToEquiv e₁))
605- (compEquiv (isoToEquiv (snd liftStr))
606- (isoToEquiv (pushoutIso _ _ _ _
607- (idEquiv _) LiftEquiv (idEquiv _)
608- (funExt cohₗ) (funExt cohᵣ))))
609- where
610- -- Agda complains if these proofs are inlined...
611- cohₗ : (x : _) → collapse₁α 1 x ≡ collapse₁α 1 x
612- cohₗ (x , p) = refl
613-
614- cohᵣ : (x : Fin (fst liftStr) × Bool) → fst x ≡ fst x
615- cohᵣ x = refl
616- snd (snd (snd (fst connectedCWskel→))) (suc (suc n)) = AC.e (suc (suc n))
617- snd connectedCWskel→ = refl , (λ _ → λ ())
596+ connectedCWskel→ .fst .fst = collapse₁card
597+ connectedCWskel→ .fst .snd .fst = collapse₁α
598+ connectedCWskel→ .fst .snd .snd .fst ()
599+ connectedCWskel→ .fst .snd .snd .snd zero = isContr→Equiv isContrUnit* (inr fzero , λ { (inr x) → cong inr (isPropFin1 fzero x) })
600+ connectedCWskel→ .fst .snd .snd .snd (suc zero) = isoToEquiv $
601+ A 2 Iso⟨ invIso e₁ ⟩
602+ Pushout (CW₁-discrete (A , sk) .fst ∘ AC.α 1 ) fst Iso⟨ liftStr .snd ⟩
603+ Pushout (λ _ → fzero) fst Iso⟨ pushoutIso _ _ _ _ (idEquiv _) (isContr→≃Unit* isContrFin1) (idEquiv _) refl refl ⟩
604+ Pushout (collapse₁α 1 ) fst ∎Iso
605+ connectedCWskel→ .fst .snd .snd .snd (suc (suc n)) = AC.e (suc (suc n))
606+ connectedCWskel→ .snd = refl , λ _ ()
618607
619608 collapse₁Equiv : (n : ℕ)
620609 → realise (_ , sk) ≃ realise (_ , connectedCWskel→ .fst)
@@ -1221,7 +1210,7 @@ makeConnectedCW {ℓ = ℓ} (suc n) {C = C} (cwsk , eqv) cA with
12211210 C' zero (lt x) = ⊥*
12221211 C' (suc m) (lt x) = Unit*
12231212 C' m (eq x) =
1224- Lift (SphereBouquet 2+n (A 2+n))
1213+ Lift _ (SphereBouquet 2+n (A 2+n))
12251214 C' m (gt x) = C* m
12261215
12271216 -- Basepoints (not needed, but useful)
@@ -1364,7 +1353,7 @@ connectedCWContr : {ℓ : Level} (n m : ℕ) (l : m <ᵗ suc n) (X : Type ℓ)
13641353 (cwX : isConnectedCW n X) → isContr (fst (fst cwX) (suc m))
13651354connectedCWContr n zero l X cwX =
13661355 subst isContr
1367- (cong (Lift ∘ Fin) (sym ((snd (fst cwX)) .snd .fst))
1356+ (cong (Lift _ ∘ Fin) (sym ((snd (fst cwX)) .snd .fst))
13681357 ∙ sym (ua (compEquiv (CW₁-discrete (connectedCWskel→CWskel (fst cwX)))
13691358 LiftEquiv)))
13701359 (isOfHLevelLift 0 (inhProp→isContr fzero isPropFin1))
@@ -1515,7 +1504,7 @@ module isFinitelyPresented-π'connectedCW-lemmas {ℓ : Level}
15151504 lem : (α : FinSphereBouquetMap∙
15161505 (card Xˢᵏᵉˡ (suc (suc (suc n)))) (card Xˢᵏᵉˡ (suc (suc n)))
15171506 (suc n))
1518- (e : fst X₄₊ₙ∙ ≡ Lift (cofib (fst α)))
1507+ (e : fst X₄₊ₙ∙ ≡ Lift _ (cofib (fst α)))
15191508 → ∥ PathP (λ i → e (~ i)) (lift (inl tt)) x ∥₁
15201509 lem α e = TR.rec squash₁ ∣_∣₁ (isConnectedPathP _ isConX' _ _ .fst)
15211510
0 commit comments