File tree Expand file tree Collapse file tree 2 files changed +34
-0
lines changed
Expand file tree Collapse file tree 2 files changed +34
-0
lines changed Original file line number Diff line number Diff line change @@ -54,6 +54,10 @@ open WildNatTrans
5454open WildNatIso
5555open wildIsIso
5656
57+ idWildNatTrans : {C : WildCat ℓC ℓC'} {D : WildCat ℓD ℓD'} {F : WildFunctor C D} → WildNatTrans _ _ F F
58+ idWildNatTrans {D = D} .N-ob x = D .id
59+ idWildNatTrans {D = D} .N-hom f = D .⋆IdR _ ∙ sym (D .⋆IdL _)
60+
5761module _
5862 {C : WildCat ℓC ℓC'} {D : WildCat ℓD ℓD'}
5963 (F G H : WildFunctor C D) where
Original file line number Diff line number Diff line change 1+ module Cubical.WildCat.Monad where
2+
3+ open import Cubical.Foundations.Prelude
4+ open import Cubical.WildCat.Base
5+ open import Cubical.WildCat.Functor
6+
7+ private variable
8+ ℓ ℓ' : Level
9+
10+ module _ {C : WildCat ℓ ℓ'} (M : WildFunctor C C) where
11+ open WildCat C
12+ open WildFunctor
13+ open WildNatTrans
14+
15+ IsPointed : Type (ℓ-max ℓ ℓ')
16+ IsPointed = WildNatTrans C C (idWildFunctor C) M
17+
18+ record IsMonad : Type (ℓ-max ℓ ℓ') where
19+ field
20+ η : IsPointed
21+ μ : WildNatTrans _ _ (comp-WildFunctor M M) M
22+ idl-μ : {X : ob} → μ .N-ob X ∘ η .N-ob (M .F-ob X) ≡ id
23+ idr-μ : {X : ob} → μ .N-ob X ∘ M .F-hom (η .N-ob X) ≡ id
24+ assoc-μ : {X : ob} → μ .N-ob X ∘ M .F-hom (μ .N-ob X) ≡ μ .N-ob X ∘ μ .N-ob (M .F-ob X)
25+
26+ bind : {X Y : ob} → Hom[ X , M .F-ob Y ] → Hom[ M .F-ob X , M .F-ob Y ]
27+ bind f = μ .N-ob _ ∘ M .F-hom f
28+
29+ WildMonad : WildCat ℓ ℓ' → Type (ℓ-max ℓ ℓ')
30+ WildMonad C = Σ[ M ∈ WildFunctor C C ] IsMonad M
You can’t perform that action at this time.
0 commit comments