Skip to content

Commit 2eba9c2

Browse files
committed
Dom and Cod projections.
1 parent f8b2eef commit 2eba9c2

File tree

1 file changed

+19
-0
lines changed
  • Cubical/Categories/Displayed/Constructions

1 file changed

+19
-0
lines changed

Cubical/Categories/Displayed/Constructions/Fiber.agda

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@ open import Cubical.Categories.Functor.Base
1111
open Functor
1212
open import Cubical.Categories.Displayed.Base
1313
open Categoryᴰ
14+
open import Cubical.Categories.Constructions.TotalCategory.Base
15+
open import Cubical.Categories.Constructions.TotalCategory.Properties as TC
1416

1517
private
1618
variable
@@ -52,3 +54,20 @@ module _ {ℓC ℓC' ℓD ℓD'} {C : Category ℓC ℓC'} {D : Category ℓD
5254
isSetHomᴰ FiberCᴰ {f = δ} = isSetΣ
5355
(isSetHom C)
5456
(λ c isOfHLevelPathP' 2 (isSet→isGroupoid (isSetHom D)) (F .F-hom c) δ)
57+
58+
∫FiberC : Category (ℓ-max ℓC ℓD) (ℓ-max ℓC' ℓD')
59+
∫FiberC = ∫C FiberCᴰ
60+
61+
FiberCod : Functor ∫FiberC D
62+
FiberCod = TC.Fst {C = D} {FiberCᴰ}
63+
64+
FiberDom : Functor ∫FiberC C
65+
F-ob FiberDom (d , c , c↦d) = c
66+
F-hom FiberDom (δ , γ , γ↦δ) = γ
67+
F-id FiberDom = refl
68+
F-seq FiberDom _ _ = refl
69+
70+
fiberFactors : funcComp F FiberDom ≡ FiberCod
71+
fiberFactors = Functor≡
72+
(λ (d , c , c↦d) c↦d)
73+
λ {(d , c , c↦d)} {(d' , c' , c'↦d')} (δ , γ , γ↦δ) γ↦δ

0 commit comments

Comments
 (0)