@@ -17,10 +17,9 @@ private variable
1717 ℓ ℓ' : Level
1818
1919module _ (CDagCat : DagCat ℓ ℓ') where
20- open DagCat CDagCat
21- open Category C
20+ open DagCat CDagCat renaming (cat to C)
2221 open areInv
23-
22+
2423 private variable
2524 x y z w : ob
2625
@@ -48,7 +47,7 @@ module _ (CDagCat : DagCat ℓ ℓ') where
4847 †IsosAreIsos fiso = isiso (f †) (fiso .sec) (fiso .ret)
4948
5049 †Of†MonIs†Epi : is†Monic f → is†Epic (f †)
51- †Of†MonIs†Epi fmon =
50+ †Of†MonIs†Epi fmon =
5251 f † † ⋆ f † ≡⟨ congL _⋆_ (†-invol f) ⟩
5352 f ⋆ f † ≡⟨ fmon ⟩
5453 id ∎
@@ -60,7 +59,7 @@ module _ (CDagCat : DagCat ℓ ℓ') where
6059 id ∎
6160
6261 †Pres†Iso : is†Iso f → is†Iso (f †)
63- †Pres†Iso fiso .sec = †Of†MonIs†Epi (fiso .ret)
62+ †Pres†Iso fiso .sec = †Of†MonIs†Epi (fiso .ret)
6463 †Pres†Iso fiso .ret = †Of†EpiIs†Mon (fiso .sec)
6564
6665 †MonicsArePIsos : is†Monic f → is†PIso f
@@ -75,9 +74,9 @@ module _ (CDagCat : DagCat ℓ ℓ') where
7574 f ⋆ f † ⋆ f ≡⟨ congR _⋆_ fepi ⟩
7675 f ⋆ id ≡⟨ ⋆IdR f ⟩
7776 f ∎
78-
77+
7978 †PresPIso : is†PIso f → is†PIso (f †)
80- †PresPIso fp =
79+ †PresPIso fp =
8180 f † ⋆ f † † ⋆ f † ≡⟨ congR _⋆_ (sym (†-seq f (f †))) ⟩
8281 f † ⋆ (f ⋆ f †) † ≡⟨ sym (†-seq (f ⋆ (f †)) f) ⟩
8382 ((f ⋆ f †) ⋆ f) † ≡⟨ cong _† (⋆Assoc f (f †) f) ⟩
@@ -97,13 +96,13 @@ module _ (CDagCat : DagCat ℓ ℓ') where
9796 †CatIso x y = Σ[ f ∈ Hom[ x , y ] ] is†Iso f
9897
9998 idIs†Mon : is†Monic (id {x = x})
100- idIs†Mon =
99+ idIs†Mon =
101100 id ⋆ id † ≡⟨ ⋆IdL (id †) ⟩
102101 id † ≡⟨ †-id ⟩
103102 id ∎
104103
105104 seqIs†Mon : (f : Hom[ x , y ]) (g : Hom[ y , z ]) → is†Monic f → is†Monic g → is†Monic (f ⋆ g)
106- seqIs†Mon f g fmon gmon =
105+ seqIs†Mon f g fmon gmon =
107106 (f ⋆ g) ⋆ (f ⋆ g) † ≡⟨ congR _⋆_ (†-seq f g) ⟩
108107 (f ⋆ g) ⋆ g † ⋆ f † ≡⟨ ⋆Assoc f g ((g †) ⋆ (f †)) ⟩
109108 f ⋆ g ⋆ g † ⋆ f † ≡⟨ congR _⋆_ (sym (⋆Assoc g (g †) (f †))) ⟩
@@ -113,7 +112,7 @@ module _ (CDagCat : DagCat ℓ ℓ') where
113112 id ∎
114113
115114 idIs†Epi : is†Epic (id {x = x})
116- idIs†Epi =
115+ idIs†Epi =
117116 id † ⋆ id ≡⟨ ⋆IdR (id †) ⟩
118117 id † ≡⟨ †-id ⟩
119118 id ∎
@@ -154,10 +153,19 @@ module _ (CDagCat : DagCat ℓ ℓ') where
154153 record is†Univalent : Type (ℓ-max ℓ ℓ') where
155154 field
156155 univ : isEquiv (pathTo†Iso {x} {y})
157-
156+
157+ univEquiv : (x ≡ y) ≃ †CatIso x y
158+ univEquiv = pathTo†Iso , univ
159+
158160 †IsoToPath : †CatIso x y → x ≡ y
159161 †IsoToPath = invIsEq univ
160162
163+ †IsoToPath-id : †IsoToPath id†Iso ≡ refl {x = x}
164+ †IsoToPath-id =
165+ †IsoToPath id†Iso ≡⟨ cong †IsoToPath (sym pathTo†Iso-refl) ⟩
166+ †IsoToPath (pathTo†Iso refl) ≡⟨ retIsEq univ refl ⟩
167+ refl ∎
168+
161169 makeIs†Univalent : (†IsoToPath : ∀ {x y} → †CatIso x y → x ≡ y)
162170 → (∀ {x} → †IsoToPath id†Iso ≡ refl {x = x})
163171 → (∀ {x y} (f : †CatIso x y) → pathTo†Iso (†IsoToPath f) .fst ≡ f .fst)
@@ -167,7 +175,7 @@ module _ (CDagCat : DagCat ℓ ℓ') where
167175 private -- This should be in the library
168176 isPropAreInv : ∀ {f} {g : Hom[ y , x ]} → isProp (areInv C f g)
169177 isPropAreInv a b i .sec = isSetHom _ _ (a .sec) (b .sec) i
170- isPropAreInv a b i .ret = isSetHom _ _ (a .ret) (b .ret) i
178+ isPropAreInv a b i .ret = isSetHom _ _ (a .ret) (b .ret) i
171179
172180 iso : TypeIso.Iso (x ≡ y) (†CatIso x y)
173181 iso .TypeIso.Iso.fun = pathTo†Iso
@@ -178,5 +186,5 @@ module _ (CDagCat : DagCat ℓ ℓ') where
178186 †IsoToPath id†Iso ≡⟨ †IsoToPath-id ⟩
179187 refl ∎
180188 )
181-
189+
182190
0 commit comments