Skip to content

Commit 3f349e0

Browse files
committed
fix naming
1 parent 5e97299 commit 3f349e0

File tree

4 files changed

+50
-51
lines changed

4 files changed

+50
-51
lines changed

Cubical/Categories/Dagger/Functor.agda

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -19,47 +19,47 @@ private variable
1919
open †Category
2020

2121
module _ (C : †Category ℓC ℓC') (D : †Category ℓD ℓD') where
22-
record IsDagFunctor (F : Functor (C .cat) (D .cat)) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
22+
record Is†Functor (F : Functor (C .cat) (D .cat)) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
2323
no-eta-equality
2424
field
2525
F-† : {x y} (f : C .cat [ x , y ]) F ⟪ f †[ C ] ⟫ ≡ F ⟪ f ⟫ †[ D ]
2626

27-
open IsDagFunctor public
27+
open Is†Functor public
2828

29-
isPropIsDagFunctor : F isProp (IsDagFunctor F)
30-
isPropIsDagFunctor F a b i .F-† f = D .isSetHom _ _ (a .F-† f) (b .F-† f) i
29+
isPropIs†Functor : F isProp (Is†Functor F)
30+
isPropIs†Functor F a b i .F-† f = D .isSetHom _ _ (a .F-† f) (b .F-† f) i
3131

32-
DagFunctor : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD'))
33-
DagFunctor = Σ[ F ∈ Functor (C .cat) (D .cat) ] IsDagFunctor F
32+
†Functor : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD'))
33+
†Functor = Σ[ F ∈ Functor (C .cat) (D .cat) ] Is†Functor F
3434

3535
open Functor
3636

37-
†Id : DagFunctor C C
37+
†Id : †Functor C C
3838
†Id .fst = Id
3939
†Id .snd .F-† f = refl
4040

41-
†FuncComp : DagFunctor C D DagFunctor D E DagFunctor C E
41+
†FuncComp : †Functor C D †Functor D E †Functor C E
4242
†FuncComp F G .fst = G .fst ∘F F .fst
4343
†FuncComp {C = C} {D = D} {E = E} F G .snd .F-† f =
4444
G .fst ⟪ F .fst ⟪ f †[ C ] ⟫ ⟫ ≡⟨ cong (G .fst .F-hom) (F .snd .F-† f) ⟩
4545
G .fst ⟪ F .fst ⟪ f ⟫ †[ D ] ⟫ ≡⟨ G .snd .F-† (F .fst .F-hom f) ⟩
4646
G .fst ⟪ F .fst ⟪ f ⟫ ⟫ †[ E ] ∎
4747

48-
_∘†F_ : DagFunctor D E DagFunctor C D DagFunctor C E
48+
_∘†F_ : †Functor D E †Functor C D †Functor C E
4949
G ∘†F F = †FuncComp F G
5050

51-
†Func≡ : (F G : DagFunctor C D) F .fst ≡ G .fst F ≡ G
52-
†Func≡ {C} {D} F G = Σ≡Prop (isPropIsDagFunctor C D)
51+
†Func≡ : (F G : †Functor C D) F .fst ≡ G .fst F ≡ G
52+
†Func≡ {C} {D} F G = Σ≡Prop (isPropIs†Functor C D)
5353

5454
open †Category
5555

56-
†Constant : ob D DagFunctor C D
56+
†Constant : ob D †Functor C D
5757
†Constant {D} d .fst = Constant _ _ d
5858
†Constant {D} d .snd .F-† _ = sym (D .†-id)
5959

6060
open NatTrans
6161

62-
NT† : (F G : DagFunctor C D) NatTrans (F .fst) (G .fst) NatTrans (G .fst) (F .fst)
62+
NT† : (F G : †Functor C D) NatTrans (F .fst) (G .fst) NatTrans (G .fst) (F .fst)
6363
NT† {C} {D} F G n .N-ob x = n ⟦ x ⟧ †[ D ]
6464
NT† {C} {D} F G n .N-hom {x} {y} f =
6565
G .fst ⟪ f ⟫ D.⋆ n ⟦ y ⟧ D.† ≡⟨ congL D._⋆_ (sym (D .†-invol (G .fst ⟪ f ⟫))) ⟩

Cubical/Categories/Dagger/Instances/BinProduct.agda

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -27,42 +27,42 @@ BinProdDaggerStr dagC dagD .is-dag .†-invol (f , g) = ≡-× (dagC .†-invol
2727
BinProdDaggerStr dagC dagD .is-dag .†-id = ≡-× (dagC .†-id) (dagD .†-id)
2828
BinProdDaggerStr dagC dagD .is-dag .†-seq (f , g) (f' , g') = ≡-× (dagC .†-seq f f') (dagD .†-seq g g')
2929

30-
DagBinProd _׆_ : †Category ℓ ℓ' †Category ℓ'' ℓ''' †Category (ℓ-max ℓ ℓ'') (ℓ-max ℓ' ℓ''')
31-
DagBinProd C D .cat = C .cat ×C D .cat
32-
DagBinProd C D .dagstr = BinProdDaggerStr (C .dagstr) (D .dagstr)
33-
_׆_ = DagBinProd
30+
†BinProd _׆_ : †Category ℓ ℓ' †Category ℓ'' ℓ''' †Category (ℓ-max ℓ ℓ'') (ℓ-max ℓ' ℓ''')
31+
†BinProd C D .cat = C .cat ×C D .cat
32+
†BinProd C D .dagstr = BinProdDaggerStr (C .dagstr) (D .dagstr)
33+
_׆_ = †BinProd
3434

3535
module _ (C : †Category ℓ ℓ') (D : †Category ℓ'' ℓ''') where
36-
†Fst : DagFunctor (C ׆ D) C
36+
†Fst : †Functor (C ׆ D) C
3737
†Fst .fst = Fst (C .cat) (D .cat)
3838
†Fst .snd .F-† (f , g) = refl
3939

40-
†Snd : DagFunctor (C ׆ D) D
40+
†Snd : †Functor (C ׆ D) D
4141
†Snd .fst = Snd (C .cat) (D .cat)
4242
†Snd .snd .F-† (f , g) = refl
4343

4444
module _ where
4545
private variable
4646
B C D E : †Category ℓ ℓ'
4747

48-
_,†F_ : DagFunctor C D DagFunctor C E DagFunctor C (D ׆ E)
48+
_,†F_ : †Functor C D †Functor C E †Functor C (D ׆ E)
4949
(F ,†F G) .fst = F .fst ,F G .fst
5050
(F ,†F G) .snd .F-† f = ≡-× (F .snd .F-† f) (G .snd .F-† f)
5151

52-
_׆F_ : DagFunctor B D DagFunctor C E DagFunctor (B ׆ C) (D ׆ E)
52+
_׆F_ : †Functor B D †Functor C E †Functor (B ׆ C) (D ׆ E)
5353
_׆F_ {B = B} {C = C} F G = (F ∘†F †Fst B C) ,†F (G ∘†F †Snd B C)
5454

55-
†Δ : DagFunctor C (C ׆ C)
55+
†Δ : †Functor C (C ׆ C)
5656
†Δ = †Id ,†F †Id
5757

5858
module _ (C : †Category ℓ ℓ') (D : †Category ℓ'' ℓ''') where
59-
†Swap : DagFunctor (C ׆ D) (D ׆ C)
59+
†Swap : †Functor (C ׆ D) (D ׆ C)
6060
†Swap = †Snd C D ,†F †Fst C D
6161

62-
†Linj : ob D DagFunctor C (C ׆ D)
62+
†Linj : ob D †Functor C (C ׆ D)
6363
†Linj d = †Id ,†F †Constant d
6464

65-
†Rinj : ob C DagFunctor D (C ׆ D)
65+
†Rinj : ob C †Functor D (C ׆ D)
6666
†Rinj c = †Constant c ,†F †Id
6767

6868
open areInv

Cubical/Categories/Dagger/Instances/Functors.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ module _ (C : †Category ℓC ℓC') (D : †Category ℓD ℓD') where
2727
open NatTrans
2828

2929
†FUNCTOR : †Category (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) (ℓ-max (ℓ-max ℓC ℓC') ℓD')
30-
†FUNCTOR .cat = FullSubcategory (FUNCTOR (C .cat) (D .cat)) (IsDagFunctor C D)
30+
†FUNCTOR .cat = FullSubcategory (FUNCTOR (C .cat) (D .cat)) (Is†Functor C D)
3131
†FUNCTOR .dagstr ._† {x = F} {y = G} = NT† F G
3232
†FUNCTOR .dagstr .is-dag .†-invol n = makeNatTransPath (funExt λ x D .†-invol (n ⟦ x ⟧))
3333
†FUNCTOR .dagstr .is-dag .†-id = makeNatTransPath (funExt λ x D .†-id)

Cubical/Categories/Dagger/Properties.agda

Lines changed: 24 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -27,15 +27,14 @@ module _ (†C : †Category ℓ ℓ') where
2727
open CategoryPath
2828

2929
-- Every dagger category is equal to its opposite
30-
dagCat≡op : C ≡ C ^op
31-
dagCat≡op = CategoryPath.mk≡ λ where
30+
†Cat≡op : C ≡ C ^op
31+
†Cat≡op = CategoryPath.mk≡ λ where
3232
.ob≡ refl
33-
.Hom≡ funExt λ x funExt λ y
34-
TypeIso.isoToPath λ where
35-
.TypeIso.fun _†
36-
.TypeIso.inv _†
37-
.TypeIso.leftInv †-invol
38-
.TypeIso.rightInv †-invol
33+
.Hom≡ funExt λ x funExt λ y TypeIso.isoToPath λ where
34+
.TypeIso.fun _†
35+
.TypeIso.inv _†
36+
.TypeIso.leftInv †-invol
37+
.TypeIso.rightInv †-invol
3938
.id≡ implicitFunExt (toPathP (transportRefl (id †) ∙ †-id))
4039
.⋆≡ implicitFunExt $ implicitFunExt $ implicitFunExt $ toPathP $ funExt λ f funExt λ g
4140
transport refl ((transport refl f † ⋆ transport refl g †) †) ≡⟨ transportRefl _ ⟩
@@ -51,23 +50,23 @@ module _ (†C : †Category ℓ ℓ') where
5150
open NatTrans
5251
open UnitCounit.TriangleIdentities
5352

54-
dagCatEquivOp : AdjointEquivalence C (C ^op)
55-
dagCatEquivOp .fun .F-ob = idfun _
56-
dagCatEquivOp .fun .F-hom = _†
57-
dagCatEquivOp .fun .F-id = †-id
58-
dagCatEquivOp .fun .F-seq = †-seq
59-
dagCatEquivOp .inv .F-ob = idfun _
60-
dagCatEquivOp .inv .F-hom = _†
61-
dagCatEquivOp .inv .F-id = †-id
62-
dagCatEquivOp .inv .F-seq = flip †-seq
63-
dagCatEquivOp .η .trans .N-ob _ = id
64-
dagCatEquivOp .η .trans .N-hom f = ⋆IdR f ∙∙ sym (†-invol f) ∙∙ sym (⋆IdL ((f †) †))
65-
dagCatEquivOp .η .nIso _ = idCatIso .snd
66-
dagCatEquivOp .ε .trans .N-ob _ = id
67-
dagCatEquivOp .ε .trans .N-hom f = ⋆IdL ((f †) †) ∙∙ †-invol f ∙∙ sym (⋆IdR f)
68-
dagCatEquivOp .ε .nIso _ = idCatIso .snd
69-
dagCatEquivOp .triangleIdentities .Δ₁ _ = ⋆IdL _ ∙ †-id
70-
dagCatEquivOp .triangleIdentities .Δ₂ _ = ⋆IdL _ ∙ †-id
53+
†CatEquivOp : AdjointEquivalence C (C ^op)
54+
†CatEquivOp .fun .F-ob = idfun _
55+
†CatEquivOp .fun .F-hom = _†
56+
†CatEquivOp .fun .F-id = †-id
57+
†CatEquivOp .fun .F-seq = †-seq
58+
†CatEquivOp .inv .F-ob = idfun _
59+
†CatEquivOp .inv .F-hom = _†
60+
†CatEquivOp .inv .F-id = †-id
61+
†CatEquivOp .inv .F-seq = flip †-seq
62+
†CatEquivOp .η .trans .N-ob _ = id
63+
†CatEquivOp .η .trans .N-hom f = ⋆IdR f ∙∙ sym (†-invol f) ∙∙ sym (⋆IdL ((f †) †))
64+
†CatEquivOp .η .nIso _ = idCatIso .snd
65+
†CatEquivOp .ε .trans .N-ob _ = id
66+
†CatEquivOp .ε .trans .N-hom f = ⋆IdL ((f †) †) ∙∙ †-invol f ∙∙ sym (⋆IdR f)
67+
†CatEquivOp .ε .nIso _ = idCatIso .snd
68+
†CatEquivOp .triangleIdentities .Δ₁ _ = ⋆IdL _ ∙ †-id
69+
†CatEquivOp .triangleIdentities .Δ₂ _ = ⋆IdL _ ∙ †-id
7170

7271
module †Morphisms (†C : †Category ℓ ℓ') where
7372
open †Category †C renaming (cat to C)

0 commit comments

Comments
 (0)