Skip to content

Commit 518533e

Browse files
committed
shorten line length
1 parent 35e2752 commit 518533e

File tree

1 file changed

+34
-17
lines changed

1 file changed

+34
-17
lines changed

Cubical/Algebra/Heap/Properties.agda

Lines changed: 34 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,11 @@ module _ (G : Group ℓ) where
3333
GroupHasHeapStr : HeapStr ⟨ G ⟩
3434
GroupHasHeapStr .[_,_,_] a b c = a · inv b · c
3535
GroupHasHeapStr .isHeap .is-set = G-is-set
36-
GroupHasHeapStr .isHeap .assoc a b c d e = ·Assoc a (inv b) (c · inv d · e) ∙∙ ·Assoc (a · inv b) c (inv d · e) ∙∙ congL _·_ (sym (·Assoc a (inv b) c))
36+
GroupHasHeapStr .isHeap .assoc a b c d e =
37+
a · inv b · c · inv d · e ≡⟨ ·Assoc a (inv b) (c · inv d · e) ⟩
38+
(a · inv b) · c · inv d · e ≡⟨ ·Assoc (a · inv b) c (inv d · e) ⟩
39+
((a · inv b) · c) · inv d · e ≡⟨ congL _·_ (sym (·Assoc a (inv b) c)) ⟩
40+
(a · inv b · c) · inv d · e ∎
3741
GroupHasHeapStr .isHeap .idl a b = ·GroupAutomorphismL G a .Iso.rightInv b
3842
GroupHasHeapStr .isHeap .idr a b = congR _·_ (·InvL b) ∙ ·IdR a
3943
GroupHasHeapStr .isHeap .inhab = ∣ 1g ∣₁
@@ -56,10 +60,12 @@ module HeapTheory (H : Heap ℓ) where
5660
-- Wagner's theory of generalized heaps, theorem 8.2.13
5761
assocl : a b c d e [ a , [ d , c , b ] , e ] ≡ [ [ a , b , c ] , d , e ]
5862
assocl a b c d e =
59-
[ a , [ d , c , b ] , e ] ≡⟨ cong [_, [ d , c , b ] , e ] (sym (wriggle a b c d)) ⟩
60-
[ [ [ a , b , c ] , d , [ d , c , b ] ] , [ d , c , b ] , e ] ≡⟨ sym (assoc [ a , b , c ] d [ d , c , b ] [ d , c , b ] e) ⟩
61-
[ [ a , b , c ] , d , [ [ d , c , b ] , [ d , c , b ] , e ] ] ≡⟨ cong [ [ a , b , c ] , d ,_] (idl [ d , c , b ] e) ⟩
62-
[ [ a , b , c ] , d , e ] ∎
63+
[ a , [ d , c , b ] , e ] ≡⟨ cong [_, [ d , c , b ] , e ] (sym (wriggle a b c d)) ⟩
64+
[ [ [ a , b , c ] , d , [ d , c , b ] ] , [ d , c , b ] , e ]
65+
≡⟨ sym (assoc [ a , b , c ] d [ d , c , b ] [ d , c , b ] e) ⟩
66+
[ [ a , b , c ] , d , [ [ d , c , b ] , [ d , c , b ] , e ] ]
67+
≡⟨ cong [ [ a , b , c ] , d ,_] (idl [ d , c , b ] e) ⟩
68+
[ [ a , b , c ] , d , e ] ∎
6369

6470
assocr : a b c d e [ a , [ d , c , b ] , e ] ≡ [ a , b , [ c , d , e ] ]
6571
assocr a b c d e =
@@ -75,7 +81,8 @@ module HeapTheory (H : Heap ℓ) where
7581
c ∎
7682

7783
StructureGroup : Heap ℓ Group ℓ
78-
StructureGroup H = toldYaSo inhab module StructureGroup where
84+
StructureGroup H = go inhab
85+
module StructureGroup where
7986
open GroupStr hiding (is-set)
8087
open HeapTheory H
8188

@@ -86,7 +93,7 @@ StructureGroup H = toldYaSo inhab module StructureGroup where
8693
fromPoint e .snd .inv a = [ e , a , e ]
8794
fromPoint e .snd .isGroup = makeIsGroup is-set
8895
(λ x y z assoc x e y e z)
89-
(λ x idr x e) -- is that a maybeJosiah reference
96+
(λ x idr x e)
9097
(λ x idl e x)
9198
(λ x assoc x e e x e ∙∙ cong [_, x , e ] (idr x e) ∙∙ idl x e)
9299
(λ x sym (assoc e x e e x) ∙∙ cong [ e , x ,_] (idl e x) ∙∙ idr e x)
@@ -95,7 +102,7 @@ StructureGroup H = toldYaSo inhab module StructureGroup where
95102
φ e e' .fst x = [ e' , e , x ]
96103
φ e e' .snd = makeIsGroupHom λ x y
97104
[ e' , e , [ x , e , y ] ] ≡⟨ assoc e' e x e y ⟩
98-
[ [ e' , e , x ] , e , y ] ≡⟨ cong [ [ e' , e , x ] ,_, y ] (sym (idr e e')) ⟩
105+
[ [ e' , e , x ] , e , y ] ≡⟨ congR [_,_, y ] (sym (idr e e')) ⟩
99106
[ [ e' , e , x ] , [ e , e' , e' ] , y ] ≡⟨ assocr [ e' , e , x ] e' e' e y ⟩
100107
[ [ e' , e , x ] , e' , [ e' , e , y ] ] ∎
101108

@@ -111,15 +118,24 @@ StructureGroup H = toldYaSo inhab module StructureGroup where
111118
lemma : e e' x φ e e' .fst (φ e' e .fst x) ≡ x
112119
lemma e e' x = φ-coh e' e e' x ∙ idl e' x
113120

114-
toldYaSo : ∥ ⟨ H ⟩ ∥₁ Group _
115-
toldYaSo = PropTrunc→Group fromPoint (λ e e' (φ e e' .fst , φ-eqv e e') , φ e e' .snd) φ-coh
121+
go : ∥ ⟨ H ⟩ ∥₁ Group _
122+
go = PropTrunc→Group fromPoint (λ e e' (φ e e' .fst , φ-eqv e e') , φ e e' .snd) φ-coh
116123

117124
StructureGroupOfGroupHeap : (G : Group ℓ) GroupEquiv (StructureGroup (GroupHeap G)) G
118-
StructureGroupOfGroupHeap G = idEquiv _ , makeIsGroupHom λ x y congR _·_ $ congL _·_ inv1g ∙ ·IdL y
119-
where open GroupStr (G .snd); open GroupTheory G
120-
121-
GroupHeapOfStructureGroup : (H : Heap ℓ) ∥ HeapEquiv (GroupHeap (StructureGroup H)) H ∥₁ -- unnatural isomorphism
122-
GroupHeapOfStructureGroup H = go inhab module GroupHeapOfStructureGroup where
125+
StructureGroupOfGroupHeap G = idEquiv _ , makeIsGroupHom λ x y
126+
[ x , 1g , y ] ≡⟨⟩
127+
x · inv 1g · y ≡⟨ congR _·_ (congL _·_ inv1g) ⟩
128+
x · 1g · y ≡⟨ congR _·_ (·IdL y) ⟩
129+
x · y ∎
130+
where
131+
open GroupStr (G .snd)
132+
open GroupTheory G
133+
open HeapTheory (GroupHeap G)
134+
135+
GroupHeapOfStructureGroup : (H : Heap ℓ)
136+
∥ HeapEquiv (GroupHeap (StructureGroup H)) H ∥₁ -- unnatural isomorphism
137+
GroupHeapOfStructureGroup H = go inhab
138+
module GroupHeapOfStructureGroup where
123139
open HeapTheory H
124140

125141
fromPoint : (e : ⟨ H ⟩) HeapEquiv (GroupHeap (StructureGroup.fromPoint H e)) H
@@ -130,13 +146,14 @@ GroupHeapOfStructureGroup H = go inhab module GroupHeapOfStructureGroup where
130146
[ [ a , e , e ] , b , c ] ≡⟨ cong [_, b , c ] (idr a e) ⟩
131147
[ a , b , c ] ∎
132148

133-
go : (p : ∥ ⟨ H ⟩ ∥₁) ∥ HeapEquiv (GroupHeap (StructureGroup.toldYaSo H p)) H ∥₁
149+
go : (p : ∥ ⟨ H ⟩ ∥₁) ∥ HeapEquiv (GroupHeap (StructureGroup.go H p)) H ∥₁
134150
go = PT.elim (λ _ isPropPropTrunc) λ e ∣ fromPoint e ∣₁
135151

136152
PointedHeap : Type (ℓ-suc ℓ)
137153
PointedHeap ℓ = Σ[ H ∈ Heap ℓ ] ⟨ H ⟩
138154

139-
PointedHeap≡ : {(H , e) (H' , e') : PointedHeap ℓ} (eqv : HeapEquiv H H') (p : eqv .fst .fst e ≡ e') (H , e) ≡ (H' , e')
155+
PointedHeap≡ : {(H , e) (H' , e') : PointedHeap ℓ} (eqv : HeapEquiv H H') (p : eqv .fst .fst e ≡ e')
156+
(H , e) ≡ (H' , e')
140157
PointedHeap≡ eqv p = cong₂ _,_ (uaHeap eqv) (ua-gluePath _ p)
141158

142159
GroupsArePointedHeaps : Group ℓ ≃ PointedHeap ℓ

0 commit comments

Comments
 (0)