Skip to content

Commit 71f32f0

Browse files
committed
Prep for Agda 2.8.0: remove some spurious private
1 parent 35d2919 commit 71f32f0

File tree

6 files changed

+12
-17
lines changed

6 files changed

+12
-17
lines changed

Cubical/Algebra/Algebra/Properties.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ module AlgebraEquivs where
110110
(invAlgebraEquiv {A = A} {B = B} f').snd = hom
111111
where
112112
open AlgebraStr {{...}}
113-
private instance
113+
instance
114114
_ = snd A
115115
_ = snd B
116116

Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -373,12 +373,10 @@ module _ (R' : CommRing ℓ) (S' : ℙ (fst R')) (SMultClosedSubset : isMultClos
373373
; ·IdR to ·A-rid)
374374
open Units A' renaming (Rˣ to Aˣ ; RˣInvClosed to AˣInvClosed)
375375
open PathToS⁻¹R ⦃...⦄
376-
private
377-
A = fst A'
378-
instance
379-
_ = cond
380-
χ = (S⁻¹RHasUniversalProp A' φ φS⊆Aˣ .fst .fst)
381-
open RingHomTheory χ
376+
A = fst A'
377+
instance _ = cond
378+
χ = (S⁻¹RHasUniversalProp A' φ φS⊆Aˣ .fst .fst)
379+
open RingHomTheory χ
382380

383381
S⁻¹R≃A : S⁻¹R ≃ A
384382
S⁻¹R≃A = fst χ , isEmbedding×isSurjection→isEquiv (Embχ , Surχ)

Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheaf.agda

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -137,8 +137,7 @@ module _ {ℓ : Level} (R' : CommRing ℓ) where
137137
open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1)
138138
open RadicalIdeal R'
139139

140-
private
141-
instance
140+
instance
142141
_ = snd R[1/ f ]AsCommRing
143142

144143
f∈√⟨g⟩ : f ∈ √ ⟨ g ⟩ₛ

Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheafPullback.agda

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -158,8 +158,7 @@ module _ (R' : CommRing ℓ) where
158158
open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1)
159159
open RadicalIdeal R'
160160

161-
private
162-
instance
161+
instance
163162
_ = snd R[1/ f ]AsCommRing
164163

165164
Df≤Dg : D f ≤ D g

Cubical/Categories/DistLatticeSheaf/Extension.agda

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -736,11 +736,10 @@ module PreSheafExtension (L : DistLattice ℓ) (C : Category ℓ' ℓ'')
736736
s₁ (cospanPath i) = DLRan F .F-hom (≤m→≤j _ _ (∧≤LCancel _ _))
737737
s₂ (cospanPath i) = DLRan F .F-hom (≤m→≤j _ _ (∧≤RCancel _ _))
738738

739-
private
740-
F[⋁β]Cone = limitC _ (F* (⋁ β)) .limCone
741-
F[⋁γ]Cone = limitC _ (F* (⋁ γ)) .limCone
742-
F[⋁β∧⋁γ]Cone = limitC _ (F* (⋁ β ∧l ⋁ γ)) .limCone
743-
F[⋁β++γ]Cone = limitC _ (F* (⋁ (β ++Fin γ))) .limCone
739+
F[⋁β]Cone = limitC _ (F* (⋁ β)) .limCone
740+
F[⋁γ]Cone = limitC _ (F* (⋁ γ)) .limCone
741+
F[⋁β∧⋁γ]Cone = limitC _ (F* (⋁ β ∧l ⋁ γ)) .limCone
742+
F[⋁β++γ]Cone = limitC _ (F* (⋁ (β ++Fin γ))) .limCone
744743

745744
-- the family of squares we need to construct cones over β++γ
746745
to++ConeSquare : {c : ob C} (f : C [ c , ⋁Cospan .l ]) (g : C [ c , ⋁Cospan .r ])

Cubical/Experiments/ZCohomologyOld/Properties.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -268,12 +268,12 @@ cancelₖ (suc (suc (suc (suc (suc n))))) x = cong (ΩKn+1→Kn (5 + n)) (rCance
268268
∙∙ cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x)))
269269
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) x
270270

271+
open Iso renaming (inv to inv')
271272
abstract
272273
isCommΩK1 : (n : ℕ) isComm∙ ((Ω^ n) (coHomK-ptd 1))
273274
isCommΩK1 zero = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹
274275
isCommΩK1 (suc n) = EH n
275276

276-
open Iso renaming (inv to inv')
277277
isCommΩK : (n : ℕ) isComm∙ (coHomK-ptd n)
278278
isCommΩK zero p q = isSetℤ _ _ (p ∙ q) (q ∙ p)
279279
isCommΩK (suc zero) = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹

0 commit comments

Comments
 (0)