Skip to content

Commit 93d75cd

Browse files
committed
chore: make level arguments explicit pt 3
1 parent 577c2f8 commit 93d75cd

File tree

5 files changed

+11
-16
lines changed

5 files changed

+11
-16
lines changed

Cubical/Codata/M/Container.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -64,11 +64,11 @@ shift-chain = λ X,π -> ((λ x → X X,π (suc x)) ,, λ {n} → π X,π {suc n
6464
------------------------------------------------------
6565

6666
Wₙ : {ℓ} -> Container ℓ ->-> Type ℓ
67-
Wₙ S 0 = Lift Unit
67+
Wₙ S 0 = Unit*
6868
Wₙ S (suc n) = P₀ S (Wₙ S n)
6969

7070
πₙ : {ℓ} -> (S : Container ℓ) -> {n : ℕ} -> Wₙ S (suc n) -> Wₙ S n
71-
πₙ {ℓ} S {0} _ = lift tt
71+
πₙ {ℓ} S {0} _ = tt*
7272
πₙ S {suc n} = P₁ (πₙ S {n})
7373

7474
sequence : {ℓ} -> Container ℓ -> Chain ℓ

Cubical/Codata/M/helper.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -81,9 +81,9 @@ iso→fun-Injection-Iso-x isom {x} {y} =
8181
(λ x₁ x₁ (lift tt))
8282
(λ x refl)
8383
(λ x refl) ⟩
84-
( (t : Lift Unit) -> (((fun isom) ∘ tempx) t ≡ ((fun isom) ∘ tempy) t))
84+
( (t : Unit*) -> (((fun isom) ∘ tempx) t ≡ ((fun isom) ∘ tempy) t))
8585
Iso⟨ iso→Pi-fun-Injection isom ⟩
86-
( (t : Lift Unit) -> tempx t ≡ tempy t)
86+
( (t : Unit*) -> tempx t ≡ tempy t)
8787
Iso⟨ iso (λ x₁ x₁ (lift tt))
8888
(λ x₁ t x₁)
8989
(λ x refl)

Cubical/Codata/M/itree.agda

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -29,12 +29,9 @@ delay-ret r = in-fun (inr r , λ ())
2929
delay-tau : {R : Type₀} -> delay R -> delay R
3030
delay-tau S = in-fun (inl tt , λ x S)
3131

32-
-- Bottom element raised
33-
data ⊥₁ : Type₁ where
34-
3532
-- TREES
3633
tree-S : (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
37-
tree-S E R = (R ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl _) -> ; (inr (A , e)) -> Lift A } )
34+
tree-S E R = (R ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl _) ->* ; (inr (A , e)) -> Lift _ A } )
3835

3936
tree : (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
4037
tree E R = M (tree-S E R)
@@ -51,7 +48,7 @@ tree-vis {A = A} e k = in-fun (inr (A , e) , λ { (lift x) -> k x } )
5148
-- Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, Steve Zdancewic
5249

5350
itree-S : (E : Type₀ -> Type₁) (R : Type₀) -> Container (ℓ-suc ℓ-zero)
54-
itree-S E R = ((Unit ⊎ R) ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl (inl _)) -> Lift Unit ; (inl (inr _)) -> ; (inr (A , e)) -> Lift A } )
51+
itree-S E R = ((Unit ⊎ R) ⊎ (Σ[ A ∈ Type₀ ] (E A))) , (λ { (inl (inl _)) -> Unit* ; (inl (inr _)) ->* ; (inr (A , e)) -> Lift _ A } )
5552

5653
itree : (E : Type₀ -> Type₁) (R : Type₀) -> Type₁
5754
itree E R = M (itree-S E R)

Cubical/Data/Nat/Algebra.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -136,7 +136,7 @@ module AlgebraHInit→Ind (N : NatAlgebra ℓ') ℓ (hinit : isNatHInitial N (
136136
-- the fact that we have to lift the Carrier obstructs readability a bit
137137
-- this is the same algebra as N, but lifted into the correct universe
138138
LiftN : NatAlgebra (ℓ-max ℓ' ℓ)
139-
Carrier LiftN = Lift {_} {ℓ} (N .Carrier)
139+
Carrier LiftN = Lift (N .Carrier)
140140
alg-zero LiftN = lift (N .alg-zero)
141141
alg-suc LiftN = lift ∘ N .alg-suc ∘ lower
142142

Cubical/Homotopy/EilenbergSteenrod.agda

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -36,8 +36,7 @@ open import Cubical.Axiom.Choice
3636

3737
record coHomTheory {ℓ ℓ' : Level} (H : (n : ℤ) Pointed ℓ AbGroup ℓ') : Type (ℓ-suc (ℓ-max ℓ ℓ'))
3838
where
39-
Boolℓ : Pointed ℓ
40-
Boolℓ = Lift Bool , lift true
39+
4140
field
4241
Hmap : (n : ℤ) {A B : Pointed ℓ} (f : A →∙ B) AbGroupHom (H n B) (H n A)
4342
HMapComp : (n : ℤ) {A B C : Pointed ℓ} (g : B →∙ C) (f : A →∙ B)
@@ -50,13 +49,12 @@ record coHomTheory {ℓ ℓ' : Level} (H : (n : ℤ) → Pointed ℓ → AbGroup
5049
Exactness : {A B : Pointed ℓ} (f : A →∙ B) (n : ℤ)
5150
Ker (Hmap n f)
5251
≡ Im (Hmap n {B = _ , inr (pt B)} (cfcod (fst f) , refl))
53-
Dimension : (n : ℤ) ¬ n ≡ 0 isContr (fst (H n Boolℓ))
52+
Dimension : (n : ℤ) ¬ n ≡ 0 isContr (fst (H n Bool*∙))
5453
BinaryWedge : (n : ℤ) {A B : Pointed ℓ} AbGroupEquiv (H n (A ⋁ B , (inl (pt A)))) (dirProdAb (H n A) (H n B))
5554

5655
record coHomTheoryGen {ℓ ℓ' : Level} (H : (n : ℤ) Pointed ℓ AbGroup ℓ') : Type (ℓ-suc (ℓ-max ℓ ℓ'))
5756
where
58-
Boolℓ : Pointed ℓ
59-
Boolℓ = Lift Bool , lift true
57+
6058
field
6159
Hmap : (n : ℤ) {A B : Pointed ℓ} (f : A →∙ B) AbGroupHom (H n B) (H n A)
6260
HMapComp : (n : ℤ) {A B C : Pointed ℓ} (g : B →∙ C) (f : A →∙ B)
@@ -70,7 +68,7 @@ record coHomTheoryGen {ℓ ℓ' : Level} (H : (n : ℤ) → Pointed ℓ → AbGr
7068
Exactness : {A B : Pointed ℓ} (f : A →∙ B) (n : ℤ)
7169
Ker (Hmap n f)
7270
≡ Im (Hmap n {B = _ , inr (pt B)} (cfcod (fst f) , refl))
73-
Dimension : (n : ℤ) ¬ n ≡ 0 isContr (fst (H n Boolℓ))
71+
Dimension : (n : ℤ) ¬ n ≡ 0 isContr (fst (H n Bool*∙))
7472
Wedge : (n : ℤ) {I : Type ℓ} (satAC : satAC (ℓ-max ℓ ℓ') 2 I) {A : I Pointed ℓ}
7573
isEquiv {A = H n (⋁gen∙ I A) .fst}
7674
{B = ΠAbGroup (λ i H n (A i)) .fst}

0 commit comments

Comments
 (0)