Skip to content

Commit 954c785

Browse files
committed
wups
1 parent 39432a3 commit 954c785

File tree

1 file changed

+27
-5
lines changed

1 file changed

+27
-5
lines changed

Cubical/CW/HurewiczTheorem.agda

Lines changed: 27 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@ open import Cubical.CW.Homology.Base
3030
open import Cubical.CW.Homology.Groups.Sn
3131
open import Cubical.CW.Homology.Groups.CofibFinSphereBouquetMap
3232
open import Cubical.CW.Homology.Groups.Subcomplex
33+
open import Cubical.CW.Instances.Lift
3334

3435
open import Cubical.Data.Empty as ⊥
3536
open import Cubical.Data.Nat renaming (_+_ to _+ℕ_)
@@ -1248,8 +1249,17 @@ HurewiczTheorem n =
12481249
Xᶜʷ = X , cw
12491250
Xᶜʷ' = X , Xˢᵏᵉˡ' , (invEquiv (snd cw'))
12501251

1252+
liftLem : (A : CW ℓ-zero) (a : fst A) (e : isConnected 2 (Lift (fst A)))
1253+
Path (Σ[ A ∈ CW ℓ-zero ] (Σ[ a ∈ fst A ] isConnected 2 (fst A)))
1254+
(A , a , subst (isConnected 2) (ua (invEquiv LiftEquiv)) e)
1255+
((CWLift ℓ-zero A) , (lift a , e))
1256+
liftLem A a e =
1257+
ΣPathP ((Σ≡Prop (λ _ squash₁) (ua LiftEquiv))
1258+
, (ΣPathPProp (λ _ isPropIsContr)
1259+
λ i ua-gluePt LiftEquiv i a))
1260+
12511261
main : isEquiv (HurewiczHomAb (X , ∣ cw ∣₁) x
1252-
(isConnectedSubtr' n 2 isc) n .fst)
1262+
(isConnectedSubtr' n 2 isc) n .fst)
12531263
main =
12541264
isEqTransport (CWexplicit→CW Xᶜʷ') (CWexplicit→CW Xᶜʷ)
12551265
(Σ≡Prop (λ _ squash₁) refl)
@@ -1262,11 +1272,23 @@ HurewiczTheorem n =
12621272
(λ linl isEqTransport _ (_ , str) (sym e)
12631273
(subst (isConnected 2) (cong fst e) con')
12641274
con'
1265-
(inl tt)
1275+
(lift (inl tt))
12661276
l
12671277
(toPathP (sym linl))
1268-
(HurewiczMapCofibEquiv α
1269-
(subst (isConnected 2) (λ i fst (e i)) con')))
1278+
(transport (λ i isEquiv
1279+
(HurewiczHomAb
1280+
(liftLem (SphereBouquet/ᶜʷ (fst α)) (inl tt)
1281+
(subst (isConnected 2)
1282+
(λ i fst (e i)) con') i .fst)
1283+
(liftLem (SphereBouquet/ᶜʷ (fst α)) (inl tt)
1284+
(subst (isConnected 2)
1285+
(λ i fst (e i)) con') i .snd .fst)
1286+
(liftLem (SphereBouquet/ᶜʷ (fst α)) (inl tt)
1287+
(subst (isConnected 2)
1288+
(λ i fst (e i)) con') i .snd .snd)
1289+
n .fst))
1290+
(HurewiczMapCofibEquiv α _)))
12701291
(isConnectedPath 1 con' l
1271-
(transport (sym (cong fst e)) (inl tt)) .fst)})
1292+
(transport (sym (cong fst e)) (lift (inl tt)))
1293+
.fst)})
12721294
(connectedCW≃CofibFinSphereBouquetMap n X cw' str)) x)

0 commit comments

Comments
 (0)