@@ -30,6 +30,7 @@ open import Cubical.CW.Homology.Base
3030open import Cubical.CW.Homology.Groups.Sn
3131open import Cubical.CW.Homology.Groups.CofibFinSphereBouquetMap
3232open import Cubical.CW.Homology.Groups.Subcomplex
33+ open import Cubical.CW.Instances.Lift
3334
3435open import Cubical.Data.Empty as ⊥
3536open import Cubical.Data.Nat renaming (_+_ to _+ℕ_)
@@ -1248,8 +1249,17 @@ HurewiczTheorem n =
12481249 Xᶜʷ = X , cw
12491250 Xᶜʷ' = X , Xˢᵏᵉˡ' , (invEquiv (snd cw'))
12501251
1252+ liftLem : (A : CW ℓ-zero) (a : fst A) (e : isConnected 2 (Lift (fst A)))
1253+ → Path (Σ[ A ∈ CW ℓ-zero ] (Σ[ a ∈ fst A ] isConnected 2 (fst A)))
1254+ (A , a , subst (isConnected 2 ) (ua (invEquiv LiftEquiv)) e)
1255+ ((CWLift ℓ-zero A) , (lift a , e))
1256+ liftLem A a e =
1257+ ΣPathP ((Σ≡Prop (λ _ → squash₁) (ua LiftEquiv))
1258+ , (ΣPathPProp (λ _ → isPropIsContr)
1259+ λ i → ua-gluePt LiftEquiv i a))
1260+
12511261 main : isEquiv (HurewiczHomAb (X , ∣ cw ∣₁) x
1252- (isConnectedSubtr' n 2 isc) n .fst)
1262+ (isConnectedSubtr' n 2 isc) n .fst)
12531263 main =
12541264 isEqTransport (CWexplicit→CW Xᶜʷ') (CWexplicit→CW Xᶜʷ)
12551265 (Σ≡Prop (λ _ → squash₁) refl)
@@ -1262,11 +1272,23 @@ HurewiczTheorem n =
12621272 (λ linl → isEqTransport _ (_ , str) (sym e)
12631273 (subst (isConnected 2 ) (cong fst e) con')
12641274 con'
1265- (inl tt)
1275+ (lift ( inl tt) )
12661276 l
12671277 (toPathP (sym linl))
1268- (HurewiczMapCofibEquiv α
1269- (subst (isConnected 2 ) (λ i → fst (e i)) con')))
1278+ (transport (λ i → isEquiv
1279+ (HurewiczHomAb
1280+ (liftLem (SphereBouquet/ᶜʷ (fst α)) (inl tt)
1281+ (subst (isConnected 2 )
1282+ (λ i → fst (e i)) con') i .fst)
1283+ (liftLem (SphereBouquet/ᶜʷ (fst α)) (inl tt)
1284+ (subst (isConnected 2 )
1285+ (λ i → fst (e i)) con') i .snd .fst)
1286+ (liftLem (SphereBouquet/ᶜʷ (fst α)) (inl tt)
1287+ (subst (isConnected 2 )
1288+ (λ i → fst (e i)) con') i .snd .snd)
1289+ n .fst))
1290+ (HurewiczMapCofibEquiv α _)))
12701291 (isConnectedPath 1 con' l
1271- (transport (sym (cong fst e)) (inl tt)) .fst)})
1292+ (transport (sym (cong fst e)) (lift (inl tt)))
1293+ .fst)})
12721294 (connectedCW≃CofibFinSphereBouquetMap n X cw' str)) x)
0 commit comments