@@ -24,7 +24,7 @@ record IsBooleanRing {B : Type ℓ}
2424
2525 open IsCommRing isCommRing public
2626
27- record BooleanStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
27+ record BooleanRingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
2828 field
2929 𝟘 : A
3030 𝟙 : A
@@ -40,25 +40,25 @@ record BooleanStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
4040 open IsBooleanRing isBooleanRing public
4141
4242BooleanRing : ∀ ℓ → Type (ℓ-suc ℓ)
43- BooleanRing ℓ = TypeWithStr ℓ BooleanStr
43+ BooleanRing ℓ = TypeWithStr ℓ BooleanRingStr
4444
45- BooleanStr →CommRingStr : { A : Type ℓ } → BooleanStr A → CommRingStr A
46- BooleanStr →CommRingStr x = record { isCommRing = IsBooleanRing.isCommRing (BooleanStr .isBooleanRing x) }
45+ BooleanRingStr →CommRingStr : { A : Type ℓ } → BooleanRingStr A → CommRingStr A
46+ BooleanRingStr →CommRingStr x = record { isCommRing = IsBooleanRing.isCommRing (BooleanRingStr .isBooleanRing x) }
4747
4848BooleanRing→CommRing : BooleanRing ℓ → CommRing ℓ
49- BooleanRing→CommRing (carrier , structure ) = carrier , BooleanStr →CommRingStr structure
49+ BooleanRing→CommRing (carrier , structure ) = carrier , BooleanRingStr →CommRingStr structure
5050
51- BooleanStr →RingStr : { A : Type ℓ } → BooleanStr A → RingStr A
52- BooleanStr →RingStr S = CommRingStr→RingStr (BooleanStr →CommRingStr S)
51+ BooleanRingStr →RingStr : { A : Type ℓ } → BooleanRingStr A → RingStr A
52+ BooleanRingStr →RingStr S = CommRingStr→RingStr (BooleanRingStr →CommRingStr S)
5353
5454BooleanRing→Ring : BooleanRing ℓ → Ring ℓ
55- BooleanRing→Ring (carrier , structure ) = carrier , BooleanStr →RingStr structure
55+ BooleanRing→Ring (carrier , structure ) = carrier , BooleanRingStr →RingStr structure
5656
5757isIdemRing : {ℓ : Level} → CommRing ℓ → Type ℓ
5858isIdemRing R = ∀ (r : ⟨ R ⟩) → (str R) .CommRingStr._·_ r r ≡ r
5959
6060module _ {ℓ : Level} (R : CommRing ℓ) (idem : isIdemRing R) where
61- open BooleanStr
61+ open BooleanRingStr
6262 open IsBooleanRing
6363 idemCommRing→BR : BooleanRing ℓ
6464 fst idemCommRing→BR = ⟨ R ⟩
@@ -74,7 +74,7 @@ BoolHom : {ℓ ℓ' : Level} → (A : BooleanRing ℓ) → (B : BooleanRing ℓ'
7474BoolHom A B = CommRingHom (BooleanRing→CommRing A) (BooleanRing→CommRing B)
7575
7676module BooleanAlgebraStr (A : BooleanRing ℓ) where
77- open BooleanStr (A . snd)
77+ open BooleanRingStr (A . snd)
7878 _∨_ : ⟨ A ⟩ → ⟨ A ⟩ → ⟨ A ⟩
7979 a ∨ b = (a + b) + (a · b)
8080 _∧_ : ⟨ A ⟩ → ⟨ A ⟩ → ⟨ A ⟩
0 commit comments