Skip to content

Commit c133bb4

Browse files
msydsMadeleine Sydney Ślaga
andauthored
Resolve naming inconsistency between Iso and Category.isIso (#1274)
s/leftInv/ret; s/rightInv/sec --------- Co-authored-by: Madeleine Sydney Ślaga <msyds@deertopia.net>
1 parent 75031af commit c133bb4

File tree

281 files changed

+1946
-1948
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

281 files changed

+1946
-1948
lines changed

Cubical/Algebra/AbGroup/Instances/FreeAbGroup.agda

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -82,12 +82,12 @@ module _ {A : Type ℓ} where
8282
AbelienizeFreeGroup→FreeAbGroup .fst
8383
Iso.inv (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) =
8484
FreeAbGroup→AbelienizeFreeGroup .fst
85-
Iso.rightInv (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) x i =
85+
Iso.sec (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) x i =
8686
FAGAbGroupGroupHom≡
8787
(compGroupHom FreeAbGroup→AbelienizeFreeGroup
8888
AbelienizeFreeGroup→FreeAbGroup)
8989
idGroupHom (λ _ refl) i .fst x
90-
Iso.leftInv (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) =
90+
Iso.ret (fst GroupIso-AbelienizeFreeGroup→FreeAbGroup) =
9191
Abi.elimProp _ (λ _ isset _ _)
9292
(funExt⁻ (cong fst (freeGroupHom≡
9393
{f = compGroupHom freeGroup→freeAbGroup FreeAbGroup→AbelienizeFreeGroup}
@@ -387,8 +387,8 @@ Free→ℤFin→Free (suc n) =
387387
Iso-ℤFin-FreeAbGroup : (n : ℕ) Iso (ℤ[Fin n ] .fst) (FAGAbGroup {A = Fin n} .fst)
388388
Iso.fun (Iso-ℤFin-FreeAbGroup n) = ℤFin→Free n
389389
Iso.inv (Iso-ℤFin-FreeAbGroup n) = Free→ℤFin n
390-
Iso.rightInv (Iso-ℤFin-FreeAbGroup n) = ℤFin→Free→ℤFin n
391-
Iso.leftInv (Iso-ℤFin-FreeAbGroup n) = Free→ℤFin→Free n
390+
Iso.sec (Iso-ℤFin-FreeAbGroup n) = ℤFin→Free→ℤFin n
391+
Iso.ret (Iso-ℤFin-FreeAbGroup n) = Free→ℤFin→Free n
392392

393393
ℤFin≅FreeAbGroup : (n : ℕ) AbGroupIso (ℤ[Fin n ]) (FAGAbGroup {A = Fin n})
394394
fst (ℤFin≅FreeAbGroup n) = Iso-ℤFin-FreeAbGroup n
@@ -404,7 +404,7 @@ elimPropℤFin : ∀ {ℓ} (n : ℕ)
404404
((f : _) A f A (-ℤ_ ∘ f))
405405
(x : _) A x
406406
elimPropℤFin n A pr z t s u w =
407-
subst A (Iso.leftInv (Iso-ℤFin-FreeAbGroup n) w) (help (ℤFin→Free n w))
407+
subst A (Iso.ret (Iso-ℤFin-FreeAbGroup n) w) (help (ℤFin→Free n w))
408408
where
409409
help : (x : _) A (Free→ℤFin n x)
410410
help = ElimProp.f (pr _) t z

Cubical/Algebra/AbGroup/Instances/IntMod.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -44,8 +44,8 @@ Iso.inv (fst ℤ/2[2]≅ℤ/2) x = x , cong (x +ₘ_) (+ₘ-rUnit x) ∙ x+x x
4444
where
4545
x+x : (x : ℤ/2 .fst) x +ₘ x ≡ fzero
4646
x+x = ℤ/2-elim refl refl
47-
Iso.rightInv (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ isProp≤) refl
48-
Iso.leftInv (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ isSetFin _ _) refl
47+
Iso.sec (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ isProp≤) refl
48+
Iso.ret (fst ℤ/2[2]≅ℤ/2) x = Σ≡Prop (λ _ isSetFin _ _) refl
4949
snd ℤ/2[2]≅ℤ/2 = makeIsGroupHom λ _ _ refl
5050

5151
ℤ/2/2≅ℤ/2 : AbGroupIso (ℤ/2 /^ 2) ℤ/2
@@ -64,8 +64,8 @@ Iso.fun (fst ℤ/2/2≅ℤ/2) =
6464
λ p ⊥.rec (snotz (sym (cong fst p))))))
6565
λ _ refl)
6666
Iso.inv (fst ℤ/2/2≅ℤ/2) = [_]
67-
Iso.rightInv (fst ℤ/2/2≅ℤ/2) _ = refl
68-
Iso.leftInv (fst ℤ/2/2≅ℤ/2) =
67+
Iso.sec (fst ℤ/2/2≅ℤ/2) _ = refl
68+
Iso.ret (fst ℤ/2/2≅ℤ/2) =
6969
SQ.elimProp (λ _ squash/ _ _) λ _ refl
7070
snd ℤ/2/2≅ℤ/2 = makeIsGroupHom
7171
(SQ.elimProp (λ _ isPropΠ λ _ isSetFin _ _)

Cubical/Algebra/AbGroup/TensorProduct.agda

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -360,9 +360,9 @@ module UP (AGr : AbGroup ℓ) (BGr : AbGroup ℓ') where
360360
(GroupHom (AGr *) (HomGroup (BGr *) C *))
361361
Iso.fun mainIso = _
362362
Iso.inv mainIso = invF
363-
Iso.rightInv mainIso (f , p) = Σ≡Prop (λ _ isPropIsGroupHom _ _)
363+
Iso.sec mainIso (f , p) = Σ≡Prop (λ _ isPropIsGroupHom _ _)
364364
(funExt λ a Σ≡Prop (λ _ isPropIsGroupHom _ _) refl)
365-
Iso.leftInv mainIso (f , p) =
365+
Iso.ret mainIso (f , p) =
366366
Σ≡Prop (λ _ isPropIsGroupHom _ _)
367367
(funExt (⊗elimProp (λ _ is-set (snd C) _ _)
368368
(λ _ _ refl)
@@ -407,8 +407,8 @@ commFun²≡id = ⊗elimProp (λ _ → ⊗squash _ _)
407407
GroupIso ((A ⨂ B) *) ((B ⨂ A) *)
408408
Iso.fun (fst ⨂-commIso) = commFun
409409
Iso.inv (fst ⨂-commIso) = commFun
410-
Iso.rightInv (fst ⨂-commIso) = commFun²≡id
411-
Iso.leftInv (fst ⨂-commIso) = commFun²≡id
410+
Iso.sec (fst ⨂-commIso) = commFun²≡id
411+
Iso.ret (fst ⨂-commIso) = commFun²≡id
412412
snd ⨂-commIso = makeIsGroupHom λ x y refl
413413

414414
⨂-comm : {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} AbGroupEquiv (A ⨂ B) (B ⨂ A)
@@ -478,7 +478,7 @@ module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGr
478478
⨂assocIso : Iso (A ⨂₁ (B ⨂ C)) ((A ⨂ B) ⨂₁ C)
479479
Iso.fun ⨂assocIso = fst assocHom⁻
480480
Iso.inv ⨂assocIso = fst assocHom
481-
Iso.rightInv ⨂assocIso =
481+
Iso.sec ⨂assocIso =
482482
⊗elimProp (λ _ ⊗squash _ _)
483483
(⊗elimProp (λ _ isPropΠ (λ _ ⊗squash _ _))
484484
(λ a b c refl)
@@ -487,7 +487,7 @@ module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGr
487487
λ x y p q cong (fst assocHom⁻) (IsGroupHom.pres· (snd assocHom) x y)
488488
∙∙ IsGroupHom.pres· (snd assocHom⁻) (fst assocHom x) (fst assocHom y)
489489
∙∙ cong₂ _+⊗_ p q
490-
Iso.leftInv ⨂assocIso =
490+
Iso.ret ⨂assocIso =
491491
⊗elimProp (λ _ ⊗squash _ _)
492492
(λ a ⊗elimProp (λ _ ⊗squash _ _)
493493
(λ b c refl)

Cubical/Algebra/Algebra/Properties.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -174,14 +174,14 @@ module AlgebraEquivs where
174174
isoOnHoms : Iso (AlgebraHom B C) (AlgebraHom A C)
175175
fun isoOnHoms g = g ∘a AlgebraEquiv→AlgebraHom f
176176
inv isoOnHoms h = h ∘a AlgebraEquiv→AlgebraHom f⁻¹
177-
rightInv isoOnHoms h =
177+
sec isoOnHoms h =
178178
Σ≡Prop
179179
(λ h isPropIsAlgebraHom _ (A .snd) h (C .snd))
180-
(isoOnTypes .rightInv (h .fst))
181-
leftInv isoOnHoms g =
180+
(isoOnTypes .sec (h .fst))
181+
ret isoOnHoms g =
182182
Σ≡Prop
183183
(λ g isPropIsAlgebraHom _ (B .snd) g (C .snd))
184-
(isoOnTypes .leftInv (g .fst))
184+
(isoOnTypes .ret (g .fst))
185185

186186
isSetAlgebraStr : (A : Type ℓ') isSet (AlgebraStr R A)
187187
isSetAlgebraStr A =

Cubical/Algebra/ChainComplex/Homology.agda

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -136,15 +136,15 @@ module _ where
136136
finChainComplexMap→HomologyMap m f n .fst
137137
Iso.inv (fst (finChainComplexEquiv→HomoglogyIso m f n)) =
138138
finChainComplexMap→HomologyMap m (invFinChainMap f) n .fst
139-
Iso.rightInv (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
139+
Iso.sec (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
140140
funExt⁻ (cong fst (sym (finChainComplexMap→HomologyMapComp
141141
(invFinChainMap (f , eqs)) f n))
142142
∙∙ cong (λ f fst (finChainComplexMap→HomologyMap m f n))
143143
(finChainComplexMap≡ λ r
144144
Σ≡Prop (λ _ isPropIsGroupHom _ _)
145145
(funExt (secEq (_ , eqs r))))
146146
∙∙ cong fst (finChainComplexMap→HomologyMapId n))
147-
Iso.leftInv (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
147+
Iso.ret (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
148148
funExt⁻ (cong fst (sym (finChainComplexMap→HomologyMapComp f
149149
(invFinChainMap (f , eqs)) n))
150150
∙∙ cong (λ f fst (finChainComplexMap→HomologyMap m f n))
@@ -264,7 +264,7 @@ module _ where
264264
chainComplexMap→HomologyMap f n .fst
265265
Iso.inv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
266266
chainComplexMap→HomologyMap (invChainMap (f , eqs)) n .fst
267-
Iso.rightInv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
267+
Iso.sec (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
268268
funExt⁻ (cong fst (sym (chainComplexMap→HomologyMapComp
269269
(invChainMap (f , eqs)) f n))
270270
∙∙ cong (λ f fst (chainComplexMap→HomologyMap f n))
@@ -273,7 +273,7 @@ module _ where
273273
(funExt (secEq (_ , eqs r))))
274274
∙∙ cong fst (chainComplexMap→HomologyMapId n))
275275

276-
Iso.leftInv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
276+
Iso.ret (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
277277
funExt⁻ (cong fst (sym (chainComplexMap→HomologyMapComp f
278278
(invChainMap (f , eqs)) n))
279279
∙∙ cong (λ f fst (chainComplexMap→HomologyMap f n))
@@ -323,10 +323,10 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
323323
(PT.map (λ {(s , t)
324324
(Iso.inv (chEq₂ .fst) s)
325325
, Σ≡Prop (λ _ AbGroupStr.is-set (snd (chain C n)) _ _)
326-
(sym (Iso.leftInv (chEq₁ .fst) _)
326+
(sym (Iso.ret (chEq₁ .fst) _)
327327
∙ cong (Iso.inv (chEq₁ .fst)) (funExt⁻ eq2 (Iso.inv (chEq₂ .fst) s))
328328
∙ cong (Iso.inv (chEq₁ .fst) ∘ bdry D (suc n) .fst)
329-
(Iso.rightInv (chEq₂ .fst) s)
329+
(Iso.sec (chEq₂ .fst) s)
330330
∙ cong (Iso.inv (chEq₁ .fst)) (cong fst t)
331331
∙ IsGroupHom.pres· (invGroupIso chEq₁ .snd) _ _
332332
∙ cong₂ (snd (chain C (suc n) ) .AbGroupStr._+_)
@@ -335,10 +335,10 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
335335
where
336336
g : _ homology n C .fst
337337
g (a , b) = [ Iso.inv (fst chEq₁) a
338-
, sym (Iso.leftInv (chEq₀ .fst) _)
338+
, sym (Iso.ret (chEq₀ .fst) _)
339339
∙ cong (Iso.inv (chEq₀ .fst)) (funExt⁻ eq1 (Iso.inv (chEq₁ .fst) a))
340340
∙ cong (Iso.inv (chEq₀ .fst) ∘ bdry D n .fst)
341-
(Iso.rightInv (chEq₁ .fst) a)
341+
(Iso.sec (chEq₁ .fst) a)
342342
∙ cong (Iso.inv (chEq₀ .fst)) b
343343
∙ IsGroupHom.pres1 (invGroupIso chEq₀ .snd) ]
344344

@@ -354,16 +354,16 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
354354
main-iso : GroupIso (homology n C) (homology n D)
355355
Iso.fun (fst main-iso) = F
356356
Iso.inv (fst main-iso) = G
357-
Iso.rightInv (fst main-iso) =
357+
Iso.sec (fst main-iso) =
358358
elimProp (λ _ GroupStr.is-set (homology n D .snd) _ _)
359359
λ{(a , b)
360360
cong [_] (Σ≡Prop (λ _
361361
AbGroupStr.is-set (snd (chain D n)) _ _)
362-
(Iso.rightInv (fst chEq₁) a))}
363-
Iso.leftInv (fst main-iso) =
362+
(Iso.sec (fst chEq₁) a))}
363+
Iso.ret (fst main-iso) =
364364
elimProp (λ _ GroupStr.is-set (homology n C .snd) _ _)
365365
λ{(a , b)
366366
cong [_] (Σ≡Prop (λ _
367367
AbGroupStr.is-set (snd (chain C n)) _ _)
368-
(Iso.leftInv (fst chEq₁) a))}
368+
(Iso.ret (fst chEq₁) a))}
369369
snd main-iso = F-hom

Cubical/Algebra/CommAlgebra/AsModule/FreeCommAlgebra/OnCoproduct.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@ module CalculateFreeCommAlgebraOnCoproduct (R : CommRing ℓ) (I J : Type ℓ) w
9898
≡ Iso.inv isoR (CommAlgebra→CommRing (R [ I ⊎ J ]) , baseRingHom)
9999
step1 i = Iso.inv isoR ((CommAlgebra→CommRing R[I⊎J]overR[I]) , ≡RingHoms i)
100100

101-
step2 = Iso.leftInv isoR (R [ I ⊎ J ])
101+
step2 = Iso.ret isoR (R [ I ⊎ J ])
102102

103103
fst≡R[I⊎J] : cong fst ≡R[I⊎J] ≡ refl
104104
fst≡R[I⊎J] =

Cubical/Algebra/CommAlgebra/AsModule/FreeCommAlgebra/Properties.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -278,8 +278,8 @@ homMapIso : {R : CommRing ℓ} {I : Type ℓ''} (A : CommAlgebra R ℓ')
278278
Iso (CommAlgebraHom (R [ I ]) A) (I (fst A))
279279
Iso.fun (homMapIso A) = evaluateAt A
280280
Iso.inv (homMapIso A) = inducedHom A
281-
Iso.rightInv (homMapIso A) = λ ϕ Theory.mapRetrievable A ϕ
282-
Iso.leftInv (homMapIso {R = R} {I = I} A) =
281+
Iso.sec (homMapIso A) = λ ϕ Theory.mapRetrievable A ϕ
282+
Iso.ret (homMapIso {R = R} {I = I} A) =
283283
λ f Σ≡Prop (λ f isPropIsCommAlgebraHom {M = R [ I ]} {N = A} f)
284284
(Theory.homRetrievable A f)
285285

@@ -344,7 +344,7 @@ module _ {R : CommRing ℓ} {A B : CommAlgebra R ℓ''} where
344344
natIndHomR ψ ϕ = isoFunInjective (homMapIso B) _ _
345345
(evaluateAt B (ψ ∘a (inducedHom A ϕ)) ≡⟨ refl ⟩
346346
fst ψ ∘ evaluateAt A (inducedHom A ϕ) ≡⟨ refl ⟩
347-
fst ψ ∘ ϕ ≡⟨ Iso.rightInv (homMapIso B) _ ⟩
347+
fst ψ ∘ ϕ ≡⟨ Iso.sec (homMapIso B) _ ⟩
348348
evaluateAt B (inducedHom B (fst ψ ∘ ϕ)) ∎)
349349

350350
{-

Cubical/Algebra/CommAlgebra/AsModule/Instances/Initial.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -117,12 +117,12 @@ module _ (R : CommRing ℓ) where
117117
asIso : Iso (fst A) (fst initialCAlg)
118118
Iso.fun asIso = fst to
119119
Iso.inv asIso = fst from
120-
Iso.rightInv asIso =
120+
Iso.sec asIso =
121121
λ x i cong
122122
fst
123123
(isContr→isProp (initialityContr initialCAlg) (to ∘a from) (idCAlgHom initialCAlg))
124124
i x
125-
Iso.leftInv asIso =
125+
Iso.ret asIso =
126126
λ x i cong
127127
fst
128128
(isContr→isProp (isInitial A) (from ∘a to) (idCAlgHom A))

Cubical/Algebra/CommAlgebra/AsModule/Localisation.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -211,8 +211,8 @@ module AlgLocTwoSubsets (R' : CommRing ℓ)
211211
IsoS₁⁻¹RS₂⁻¹R : Iso S₁⁻¹R S₂⁻¹R
212212
Iso.fun IsoS₁⁻¹RS₂⁻¹R = fst χ₁
213213
Iso.inv IsoS₁⁻¹RS₂⁻¹R = fst χ₂
214-
Iso.rightInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₁∘χ₂≡id)
215-
Iso.leftInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₂∘χ₁≡id)
214+
Iso.sec IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₁∘χ₂≡id)
215+
Iso.ret IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₂∘χ₁≡id)
216216

217217
isContrS₁⁻¹R≅S₂⁻¹R : isContr (CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg)
218218
isContrS₁⁻¹R≅S₂⁻¹R = center , uniqueness

Cubical/Algebra/CommAlgebra/AsModule/Properties.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -139,8 +139,8 @@ module CommAlgChar (R : CommRing ℓ) {ℓ' : Level} where
139139
CommAlgIso : Iso (CommAlgebra R ℓ') CommRingWithHom
140140
fun CommAlgIso = fromCommAlg
141141
inv CommAlgIso = toCommAlg
142-
rightInv CommAlgIso = CommRingWithHomRoundTrip
143-
leftInv CommAlgIso = CommAlgRoundTrip
142+
sec CommAlgIso = CommRingWithHomRoundTrip
143+
ret CommAlgIso = CommAlgRoundTrip
144144

145145
open IsCommRingHom
146146

@@ -301,8 +301,8 @@ contrCommAlgebraHom→contrCommAlgebraEquiv σ contrHom x y = σEquiv ,
301301
σIso : Iso ⟨ σ x ⟩ ⟨ σ y ⟩
302302
fun σIso = fst χ₁
303303
inv σIso = fst χ₂
304-
rightInv σIso = funExt⁻ (cong fst χ₁∘χ₂≡id)
305-
leftInv σIso = funExt⁻ (cong fst χ₂∘χ₁≡id)
304+
sec σIso = funExt⁻ (cong fst χ₁∘χ₂≡id)
305+
ret σIso = funExt⁻ (cong fst χ₂∘χ₁≡id)
306306

307307
σEquiv : CommAlgebraEquiv (σ x) (σ y)
308308
fst σEquiv = isoToEquiv σIso

0 commit comments

Comments
 (0)