@@ -136,15 +136,15 @@ module _ where
136136 finChainComplexMap→HomologyMap m f n .fst
137137 Iso.inv (fst (finChainComplexEquiv→HomoglogyIso m f n)) =
138138 finChainComplexMap→HomologyMap m (invFinChainMap f) n .fst
139- Iso.rightInv (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
139+ Iso.sec (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
140140 funExt⁻ (cong fst (sym (finChainComplexMap→HomologyMapComp
141141 (invFinChainMap (f , eqs)) f n))
142142 ∙∙ cong (λ f → fst (finChainComplexMap→HomologyMap m f n))
143143 (finChainComplexMap≡ λ r
144144 → Σ≡Prop (λ _ → isPropIsGroupHom _ _)
145145 (funExt (secEq (_ , eqs r))))
146146 ∙∙ cong fst (finChainComplexMap→HomologyMapId n))
147- Iso.leftInv (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
147+ Iso.ret (fst (finChainComplexEquiv→HomoglogyIso m (f , eqs) n)) =
148148 funExt⁻ (cong fst (sym (finChainComplexMap→HomologyMapComp f
149149 (invFinChainMap (f , eqs)) n))
150150 ∙∙ cong (λ f → fst (finChainComplexMap→HomologyMap m f n))
@@ -264,7 +264,7 @@ module _ where
264264 chainComplexMap→HomologyMap f n .fst
265265 Iso.inv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
266266 chainComplexMap→HomologyMap (invChainMap (f , eqs)) n .fst
267- Iso.rightInv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
267+ Iso.sec (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
268268 funExt⁻ (cong fst (sym (chainComplexMap→HomologyMapComp
269269 (invChainMap (f , eqs)) f n))
270270 ∙∙ cong (λ f → fst (chainComplexMap→HomologyMap f n))
@@ -273,7 +273,7 @@ module _ where
273273 (funExt (secEq (_ , eqs r))))
274274 ∙∙ cong fst (chainComplexMap→HomologyMapId n))
275275
276- Iso.leftInv (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
276+ Iso.ret (fst (chainComplexEquiv→HomoglogyIso (f , eqs) n)) =
277277 funExt⁻ (cong fst (sym (chainComplexMap→HomologyMapComp f
278278 (invChainMap (f , eqs)) n))
279279 ∙∙ cong (λ f → fst (chainComplexMap→HomologyMap f n))
@@ -323,10 +323,10 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
323323 (PT.map (λ {(s , t)
324324 → (Iso.inv (chEq₂ .fst) s)
325325 , Σ≡Prop (λ _ → AbGroupStr.is-set (snd (chain C n)) _ _)
326- (sym (Iso.leftInv (chEq₁ .fst) _)
326+ (sym (Iso.ret (chEq₁ .fst) _)
327327 ∙ cong (Iso.inv (chEq₁ .fst)) (funExt⁻ eq2 (Iso.inv (chEq₂ .fst) s))
328328 ∙ cong (Iso.inv (chEq₁ .fst) ∘ bdry D (suc n) .fst)
329- (Iso.rightInv (chEq₂ .fst) s)
329+ (Iso.sec (chEq₂ .fst) s)
330330 ∙ cong (Iso.inv (chEq₁ .fst)) (cong fst t)
331331 ∙ IsGroupHom.pres· (invGroupIso chEq₁ .snd) _ _
332332 ∙ cong₂ (snd (chain C (suc n) ) .AbGroupStr._+_)
@@ -335,10 +335,10 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
335335 where
336336 g : _ → homology n C .fst
337337 g (a , b) = [ Iso.inv (fst chEq₁) a
338- , sym (Iso.leftInv (chEq₀ .fst) _)
338+ , sym (Iso.ret (chEq₀ .fst) _)
339339 ∙ cong (Iso.inv (chEq₀ .fst)) (funExt⁻ eq1 (Iso.inv (chEq₁ .fst) a))
340340 ∙ cong (Iso.inv (chEq₀ .fst) ∘ bdry D n .fst)
341- (Iso.rightInv (chEq₁ .fst) a)
341+ (Iso.sec (chEq₁ .fst) a)
342342 ∙ cong (Iso.inv (chEq₀ .fst)) b
343343 ∙ IsGroupHom.pres1 (invGroupIso chEq₀ .snd) ]
344344
@@ -354,16 +354,16 @@ homologyIso n C D chEq₂ chEq₁ chEq₀ eq1 eq2 = main-iso
354354 main-iso : GroupIso (homology n C) (homology n D)
355355 Iso.fun (fst main-iso) = F
356356 Iso.inv (fst main-iso) = G
357- Iso.rightInv (fst main-iso) =
357+ Iso.sec (fst main-iso) =
358358 elimProp (λ _ → GroupStr.is-set (homology n D .snd) _ _)
359359 λ {(a , b)
360360 → cong [_] (Σ≡Prop (λ _
361361 → AbGroupStr.is-set (snd (chain D n)) _ _)
362- (Iso.rightInv (fst chEq₁) a))}
363- Iso.leftInv (fst main-iso) =
362+ (Iso.sec (fst chEq₁) a))}
363+ Iso.ret (fst main-iso) =
364364 elimProp (λ _ → GroupStr.is-set (homology n C .snd) _ _)
365365 λ {(a , b)
366366 → cong [_] (Σ≡Prop (λ _
367367 → AbGroupStr.is-set (snd (chain C n)) _ _)
368- (Iso.leftInv (fst chEq₁) a))}
368+ (Iso.ret (fst chEq₁) a))}
369369 snd main-iso = F-hom
0 commit comments