@@ -48,20 +48,20 @@ _[_,-] : (C : Category ℓ ℓ') → (c : C .ob)→ Functor C (SET ℓ')
4848(C [ c ,-]) .F-seq _ _ = funExt λ _ → sym (C .⋆Assoc _ _ _)
4949
5050-- Lift functor
51- LiftF : Functor (SET ℓ) (SET (ℓ-max ℓ ℓ'))
52- LiftF {ℓ}{ℓ'} .F-ob A = (Lift {ℓ}{ℓ'} (A .fst)) , isOfHLevelLift 2 (A .snd)
53- LiftF .F-hom f x = lift (f (x .lower))
54- LiftF .F-id = refl
55- LiftF .F-seq f g = funExt λ x → refl
51+ LiftF : ∀ ℓ' → Functor (SET ℓ) (SET (ℓ-max ℓ ℓ'))
52+ LiftF ℓ' .F-ob A = (Lift ℓ' (A .fst)) , isOfHLevelLift 2 (A .snd)
53+ LiftF ℓ' .F-hom f x = lift (f (x .lower))
54+ LiftF ℓ' .F-id = refl
55+ LiftF ℓ' .F-seq f g = funExt λ x → refl
5656
5757module _ {ℓ ℓ' : Level} where
58- isFullyFaithfulLiftF : isFullyFaithful (LiftF {ℓ} {ℓ'} )
58+ isFullyFaithfulLiftF : isFullyFaithful (LiftF {ℓ} ℓ' )
5959 isFullyFaithfulLiftF X Y = isoToIsEquiv LiftFIso
6060 where
6161 open Iso
6262 LiftFIso : Iso (X .fst → Y .fst)
63- (Lift {ℓ}{ℓ'} (X .fst) → Lift {ℓ}{ℓ'} (Y .fst))
64- fun LiftFIso = LiftF .F-hom {X} {Y}
63+ (Lift ℓ' (X .fst) → Lift ℓ' (Y .fst))
64+ fun LiftFIso = LiftF ℓ' .F-hom {X} {Y}
6565 inv LiftFIso = λ f x → f (lift x) .lower
6666 rightInv LiftFIso = λ _ → funExt λ _ → refl
6767 leftInv LiftFIso = λ _ → funExt λ _ → refl
@@ -189,7 +189,7 @@ module _ {ℓ} where
189189-- LiftF : SET ℓ → SET (ℓ-suc ℓ) preserves "small" limits
190190-- i.e. limits over diagram shapes J : Category ℓ ℓ
191191module _ {ℓ : Level} where
192- preservesLimitsLiftF : preservesLimits {ℓJ = ℓ} {ℓJ' = ℓ} (LiftF {ℓ} { ℓ-suc ℓ} )
192+ preservesLimitsLiftF : preservesLimits {ℓJ = ℓ} {ℓJ' = ℓ} (LiftF {ℓ} ( ℓ-suc ℓ) )
193193 preservesLimitsLiftF = preservesLimitsChar _
194194 completeSET
195195 completeSETSuc
@@ -209,22 +209,22 @@ module _ {ℓ : Level} where
209209 (λ x hx → funExt (λ d → cone≡ λ u → funExt (λ _ → sym (funExt⁻ (hx u) d))))
210210
211211 lowerCone : ∀ J D
212- → Cone (LiftF ∘F D) (Unit* , isOfHLevelLift 2 isSetUnit)
212+ → Cone (LiftF _ ∘F D) (Unit* , isOfHLevelLift 2 isSetUnit)
213213 → Cone D (Unit* , isOfHLevelLift 2 isSetUnit)
214214 coneOut (lowerCone J D cc) v tt* = cc .coneOut v tt* .lower
215215 coneOutCommutes (lowerCone J D cc) e =
216216 funExt λ { tt* → cong lower (funExt⁻ (cc .coneOutCommutes e) tt*) }
217217
218218 liftCone : ∀ J D
219219 → Cone D (Unit* , isOfHLevelLift 2 isSetUnit)
220- → Cone (LiftF ∘F D) (Unit* , isOfHLevelLift 2 isSetUnit)
220+ → Cone (LiftF _ ∘F D) (Unit* , isOfHLevelLift 2 isSetUnit)
221221 coneOut (liftCone J D cc) v tt* = lift (cc .coneOut v tt*)
222222 coneOutCommutes (liftCone J D cc) e =
223223 funExt λ { tt* → cong lift (funExt⁻ (cc .coneOutCommutes e) tt*) }
224224
225225 limSetIso : ∀ J D → CatIso (SET (ℓ-suc ℓ))
226- (completeSETSuc J (LiftF ∘F D) .lim)
227- (LiftF .F-ob (completeSET J D .lim))
226+ (completeSETSuc J (LiftF _ ∘F D) .lim)
227+ (LiftF _ .F-ob (completeSET J D .lim))
228228 fst (limSetIso J D) cc = lift (lowerCone J D cc)
229229 cInv (snd (limSetIso J D)) cc = liftCone J D (cc .lower)
230230 sec (snd (limSetIso J D)) = funExt (λ _ → liftExt (cone≡ λ _ → refl))
0 commit comments