Skip to content

Commit f0da23f

Browse files
committed
make euclid-helper< private
1 parent 39d4936 commit f0da23f

File tree

1 file changed

+25
-24
lines changed

1 file changed

+25
-24
lines changed

Cubical/Data/Nat/GCD.agda

Lines changed: 25 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -124,30 +124,31 @@ stepGCD w =
124124

125125
-- putting it all together using an auxiliary variable to pass the termination checking
126126

127-
euclid-helper< : (m n f : ℕ) (n < m) (m ≤ f) GCD m n
128-
euclid-helper< m n zero n<m m≤0 .fst = 0
129-
euclid-helper< m n zero n<m m≤0 .snd .fst .fst = ∣-refl $ sym $ ≤0→≡0 m≤0
130-
euclid-helper< m n zero n<m m≤0 .snd .fst .snd = ∣-refl $ sym $ ≤0→≡0 $
131-
<-weaken $ <≤-trans n<m m≤0
132-
euclid-helper< m n zero n<m m≤0 .snd .snd d' _ = ∣-zeroʳ d'
133-
euclid-helper< zero zero (suc _) _ _ .fst = 0
134-
euclid-helper< zero zero (suc _) _ _ .snd .fst .fst = ∣-refl refl
135-
euclid-helper< zero zero (suc _) _ _ .snd .fst .snd = ∣-refl refl
136-
euclid-helper< zero zero (suc _) _ _ .snd .snd d' _ = ∣-zeroʳ d'
137-
euclid-helper< zero (suc n) (suc _) _ _ .fst = suc n
138-
euclid-helper< zero (suc n) (suc _) _ _ .snd .fst .fst = ∣-zeroʳ (suc n)
139-
euclid-helper< zero (suc n) (suc _) _ _ .snd .fst .snd = ∣-refl refl
140-
euclid-helper< zero (suc n) (suc _) _ _ .snd .snd d' (_ , d'∣1+n) = d'∣1+n
141-
euclid-helper< (suc m) zero (suc _) _ _ .fst = suc m
142-
euclid-helper< (suc m) zero (suc _) _ _ .snd .fst .fst = ∣-refl refl
143-
euclid-helper< (suc m) zero (suc _) _ _ .snd .fst .snd = ∣-zeroʳ (suc m)
144-
euclid-helper< (suc m) zero (suc _) _ _ .snd .snd d' (d'∣1+m , _) = d'∣1+m
145-
euclid-helper< m@(suc _) n@(suc n-1) (suc f) n<m m≤1+f =
146-
let
147-
n≤f = predℕ-≤-predℕ $ <≤-trans n<m m≤1+f
148-
r = euclid-helper< n (m % n) f (%< n-1 m) n≤f
149-
in
150-
r .fst , stepGCD (r .snd)
127+
private
128+
euclid-helper< : (m n f : ℕ) (n < m) (m ≤ f) GCD m n
129+
euclid-helper< m n zero n<m m≤0 .fst = 0
130+
euclid-helper< m n zero n<m m≤0 .snd .fst .fst = ∣-refl $ sym $ ≤0→≡0 m≤0
131+
euclid-helper< m n zero n<m m≤0 .snd .fst .snd = ∣-refl $ sym $ ≤0→≡0 $
132+
<-weaken $ <≤-trans n<m m≤0
133+
euclid-helper< m n zero n<m m≤0 .snd .snd d' _ = ∣-zeroʳ d'
134+
euclid-helper< zero zero (suc _) _ _ .fst = 0
135+
euclid-helper< zero zero (suc _) _ _ .snd .fst .fst = ∣-refl refl
136+
euclid-helper< zero zero (suc _) _ _ .snd .fst .snd = ∣-refl refl
137+
euclid-helper< zero zero (suc _) _ _ .snd .snd d' _ = ∣-zeroʳ d'
138+
euclid-helper< zero (suc n) (suc _) _ _ .fst = suc n
139+
euclid-helper< zero (suc n) (suc _) _ _ .snd .fst .fst = ∣-zeroʳ (suc n)
140+
euclid-helper< zero (suc n) (suc _) _ _ .snd .fst .snd = ∣-refl refl
141+
euclid-helper< zero (suc n) (suc _) _ _ .snd .snd d' (_ , d'∣1+n) = d'∣1+n
142+
euclid-helper< (suc m) zero (suc _) _ _ .fst = suc m
143+
euclid-helper< (suc m) zero (suc _) _ _ .snd .fst .fst = ∣-refl refl
144+
euclid-helper< (suc m) zero (suc _) _ _ .snd .fst .snd = ∣-zeroʳ (suc m)
145+
euclid-helper< (suc m) zero (suc _) _ _ .snd .snd d' (d'∣1+m , _) = d'∣1+m
146+
euclid-helper< m@(suc _) n@(suc n-1) (suc f) n<m m≤1+f =
147+
let
148+
n≤f = predℕ-≤-predℕ $ <≤-trans n<m m≤1+f
149+
r = euclid-helper< n (m % n) f (%< n-1 m) n≤f
150+
in
151+
r .fst , stepGCD (r .snd)
151152

152153
euclid : m n GCD m n
153154
euclid m zero = m , (∣-refl refl , ∣-zeroʳ m) , λ d' (d'∣m , _) d'∣m

0 commit comments

Comments
 (0)