diff --git a/Cubical/Papers/SmashProducts.agda b/Cubical/Papers/SmashProducts.agda index 25aa062464..3b6f12bccc 100644 --- a/Cubical/Papers/SmashProducts.agda +++ b/Cubical/Papers/SmashProducts.agda @@ -41,10 +41,10 @@ open WCat2 using (PointedCat) open WCat3 using (isMonoidalWildCat) -- Definition 4 (Symmetric Monoidal wild categories) -open WCat3 using (SymmetricMonoidalPrecat) +open WCat3 using (isSymmetricWildCat) --- 2.2 Smash Products --- Definition 5 (Smash products -- note: defined as a coproduct in the +-- Definition 5 (Smash products -- note: defined as a pushout in the -- library. E.g. the ⟨ x , y ⟩ constructor here is simply -- inr(x,y). Also note that pushₗ and pushᵣ are inverted with this -- definition.) diff --git a/Cubical/WildCat/BraidedSymmetricMonoidal.agda b/Cubical/WildCat/BraidedSymmetricMonoidal.agda index 7f0287332d..e6042c4625 100644 --- a/Cubical/WildCat/BraidedSymmetricMonoidal.agda +++ b/Cubical/WildCat/BraidedSymmetricMonoidal.agda @@ -104,6 +104,6 @@ module _ (M : WildCat ℓ ℓ') where hexagon : HexagonType₁ isMonoidal Braid symBraiding : isSymmetricBraiding isMonoidal Braid -SymmetricMonoidalPrecat : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ')) -SymmetricMonoidalPrecat ℓ ℓ' = +SymmetricMonoidalWildCat : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ')) +SymmetricMonoidalWildCat ℓ ℓ' = Σ[ C ∈ WildCat ℓ ℓ' ] isSymmetricWildCat C