diff --git a/Cubical/Algebra/Algebra/Properties.agda b/Cubical/Algebra/Algebra/Properties.agda index 0bffb60665..1631e45053 100644 --- a/Cubical/Algebra/Algebra/Properties.agda +++ b/Cubical/Algebra/Algebra/Properties.agda @@ -110,7 +110,7 @@ module AlgebraEquivs where (invAlgebraEquiv {A = A} {B = B} f').snd = hom where open AlgebraStr {{...}} - private instance + instance _ = snd A _ = snd B diff --git a/Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda b/Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda index 0c89652f21..1a11d384dd 100644 --- a/Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda +++ b/Cubical/Algebra/CommRing/Localisation/UniversalProperty.agda @@ -373,12 +373,10 @@ module _ (R' : CommRing ℓ) (S' : ℙ (fst R')) (SMultClosedSubset : isMultClos ; ·IdR to ·A-rid) open Units A' renaming (Rˣ to Aˣ ; RˣInvClosed to AˣInvClosed) open PathToS⁻¹R ⦃...⦄ - private - A = fst A' - instance - _ = cond - χ = (S⁻¹RHasUniversalProp A' φ φS⊆Aˣ .fst .fst) - open RingHomTheory χ + A = fst A' + instance _ = cond + χ = (S⁻¹RHasUniversalProp A' φ φS⊆Aˣ .fst .fst) + open RingHomTheory χ S⁻¹R≃A : S⁻¹R ≃ A S⁻¹R≃A = fst χ , isEmbedding×isSurjection→isEquiv (Embχ , Surχ) diff --git a/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheaf.agda b/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheaf.agda index 0ca7597380..a86dd5be80 100644 --- a/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheaf.agda +++ b/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheaf.agda @@ -137,8 +137,7 @@ module _ {ℓ : Level} (R' : CommRing ℓ) where open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1) open RadicalIdeal R' - private - instance + instance _ = snd R[1/ f ]AsCommRing f∈√⟨g⟩ : f ∈ √ ⟨ g ⟩ₛ diff --git a/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheafPullback.agda b/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheafPullback.agda index 41695c786a..452bcd4fbd 100644 --- a/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheafPullback.agda +++ b/Cubical/AlgebraicGeometry/ZariskiLattice/StructureSheafPullback.agda @@ -158,8 +158,7 @@ module _ (R' : CommRing ℓ) where open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1) open RadicalIdeal R' - private - instance + instance _ = snd R[1/ f ]AsCommRing Df≤Dg : D f ≤ D g diff --git a/Cubical/Categories/DistLatticeSheaf/Extension.agda b/Cubical/Categories/DistLatticeSheaf/Extension.agda index 4687ad8189..417e43b762 100644 --- a/Cubical/Categories/DistLatticeSheaf/Extension.agda +++ b/Cubical/Categories/DistLatticeSheaf/Extension.agda @@ -736,11 +736,10 @@ module PreSheafExtension (L : DistLattice ℓ) (C : Category ℓ' ℓ'') s₁ (cospanPath i) = DLRan F .F-hom (≤m→≤j _ _ (∧≤LCancel _ _)) s₂ (cospanPath i) = DLRan F .F-hom (≤m→≤j _ _ (∧≤RCancel _ _)) - private - F[⋁β]Cone = limitC _ (F* (⋁ β)) .limCone - F[⋁γ]Cone = limitC _ (F* (⋁ γ)) .limCone - F[⋁β∧⋁γ]Cone = limitC _ (F* (⋁ β ∧l ⋁ γ)) .limCone - F[⋁β++γ]Cone = limitC _ (F* (⋁ (β ++Fin γ))) .limCone + F[⋁β]Cone = limitC _ (F* (⋁ β)) .limCone + F[⋁γ]Cone = limitC _ (F* (⋁ γ)) .limCone + F[⋁β∧⋁γ]Cone = limitC _ (F* (⋁ β ∧l ⋁ γ)) .limCone + F[⋁β++γ]Cone = limitC _ (F* (⋁ (β ++Fin γ))) .limCone -- the family of squares we need to construct cones over β++γ to++ConeSquare : {c : ob C} (f : C [ c , ⋁Cospan .l ]) (g : C [ c , ⋁Cospan .r ]) diff --git a/Cubical/Experiments/ZCohomologyOld/Properties.agda b/Cubical/Experiments/ZCohomologyOld/Properties.agda index faaadde8c8..8d09d5de98 100644 --- a/Cubical/Experiments/ZCohomologyOld/Properties.agda +++ b/Cubical/Experiments/ZCohomologyOld/Properties.agda @@ -268,12 +268,12 @@ cancelₖ (suc (suc (suc (suc (suc n))))) x = cong (ΩKn+1→Kn (5 + n)) (rCance ∙∙ cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) x +open Iso renaming (inv to inv') abstract isCommΩK1 : (n : ℕ) → isComm∙ ((Ω^ n) (coHomK-ptd 1)) isCommΩK1 zero = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹ isCommΩK1 (suc n) = EH n - open Iso renaming (inv to inv') isCommΩK : (n : ℕ) → isComm∙ (coHomK-ptd n) isCommΩK zero p q = isSetℤ _ _ (p ∙ q) (q ∙ p) isCommΩK (suc zero) = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹