forked from deepseek-ai/EPLB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheplb.py
164 lines (141 loc) · 7.73 KB
/
eplb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from typing import Tuple
import torch
def balanced_packing(weight: torch.Tensor, num_packs: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs
are as balanced as possible.
Parameters:
weight: [X, n], the weight of each item
num_packs: number of packs
Returns:
pack_index: [X, n], the pack index of each item
rank_in_pack: [X, n], the rank of the item in the pack
"""
num_layers, num_groups = weight.shape
assert num_groups % num_packs == 0
groups_per_pack = num_groups // num_packs
if groups_per_pack == 1:
pack_index = torch.arange(weight.size(-1), dtype=torch.int64, device=weight.device).expand(weight.shape)
rank_in_pack = torch.zeros_like(weight, dtype=torch.int64)
return pack_index, rank_in_pack
indices = weight.float().sort(-1, descending=True).indices.cpu()
pack_index = torch.full_like(weight, fill_value=-1, dtype=torch.int64, device='cpu')
rank_in_pack = torch.full_like(pack_index, fill_value=-1)
for i in range(num_layers):
pack_weights = [0] * num_packs
pack_items = [0] * num_packs
for group in indices[i]:
pack = min((i for i in range(num_packs) if pack_items[i] < groups_per_pack),
key=pack_weights.__getitem__)
assert pack_items[pack] < groups_per_pack
pack_index[i, group] = pack
rank_in_pack[i, group] = pack_items[pack]
pack_weights[pack] += weight[i, group]
pack_items[pack] += 1
return pack_index, rank_in_pack
def replicate_experts(weight: torch.Tensor, num_phy: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Replicate `num_log` experts to `num_phy` replicas, such that the maximum load of all replicas is minimized.
Parameters:
weight: [X, num_log]
num_phy: total number of experts after replication
Returns:
phy2log: [X, num_phy], logical expert id of each physical expert
rank: [X, num_phy], the replica rank
logcnt: [X, num_log], number of replicas for each logical expert
"""
n, num_log = weight.shape
num_redundant = num_phy - num_log
assert num_redundant >= 0
device = weight.device
phy2log = torch.arange(num_phy, dtype=torch.int64, device=device).repeat(n, 1)
rank = torch.zeros(n, num_phy, dtype=torch.int64, device=device)
logcnt = torch.ones(n, num_log, dtype=torch.int64, device=device)
arangen = torch.arange(n, dtype=torch.int64, device=device)
for i in range(num_log, num_phy):
redundant_indices = (weight / logcnt).max(dim=-1).indices
phy2log[:, i] = redundant_indices
rank[:, i] = logcnt[arangen, redundant_indices]
logcnt[arangen, redundant_indices] += 1
return phy2log, rank, logcnt
def rebalance_experts_hierarchical(weight: torch.Tensor, num_physical_experts: int,
num_groups: int, num_nodes: int, num_gpus: int):
"""
Parameters:
weight: [num_moe_layers, num_logical_experts]
num_physical_experts: number of physical experts after replication
num_groups: number of expert groups
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
num_gpus: number of GPUs, must be a multiple of `num_nodes`
Returns:
physical_to_logical_map: [num_moe_layers, num_physical_experts]
logical_to_physical_map: [num_moe_layers, num_logical_experts, X]
logical_count: [num_moe_layers, num_logical_experts]
"""
num_layers, num_logical_experts = weight.shape
assert num_logical_experts % num_groups == 0
group_size = num_logical_experts // num_groups
assert num_groups % num_nodes == 0
groups_per_node = num_groups // num_nodes
assert num_gpus % num_nodes == 0
assert num_physical_experts % num_gpus == 0
phy_experts_per_gpu = num_physical_experts // num_gpus
def inverse(perm: torch.Tensor) -> torch.Tensor:
inv = torch.empty_like(perm)
inv.scatter_(1, perm, torch.arange(perm.size(1), dtype=torch.int64, device=perm.device).expand(perm.shape))
return inv
# Step 1: pack groups to nodes
tokens_per_group = weight.unflatten(-1, (num_groups, group_size)).sum(-1)
group_pack_index, group_rank_in_pack = balanced_packing(tokens_per_group, num_nodes)
log2mlog = (((group_pack_index * groups_per_node + group_rank_in_pack) * group_size).unsqueeze(-1) +
torch.arange(group_size, dtype=torch.int64, device=group_pack_index.device)).flatten(-2)
mlog2log = inverse(log2mlog)
# Step 2: construct redundant experts within nodes
# [num_layers * num_nodes, num_logical_experts // num_nodes]
tokens_per_mlog = weight.gather(-1, mlog2log).view(-1, num_logical_experts // num_nodes)
phy2mlog, phyrank, mlogcnt = replicate_experts(tokens_per_mlog, num_physical_experts // num_nodes)
# Step 3: pack physical_experts to GPUs
# [num_layers * num_nodes, num_physical_experts // num_nodes]
tokens_per_phy = (tokens_per_mlog / mlogcnt).gather(-1, phy2mlog)
pack_index, rank_in_pack = balanced_packing(tokens_per_phy, num_gpus // num_nodes)
phy2pphy = pack_index * phy_experts_per_gpu + rank_in_pack
pphy2phy = inverse(phy2pphy)
pphy2mlog = phy2mlog.gather(-1, pphy2phy) # [num_layers * num_nodes, num_log_per_nodes]
pphy2mlog = (pphy2mlog.view(num_layers, num_nodes, -1) +
torch.arange(0, num_logical_experts, num_logical_experts // num_nodes,
device=group_pack_index.device).view(1, -1, 1)).flatten(-2)
pphy2log = mlog2log.gather(-1, pphy2mlog)
pphyrank = phyrank.gather(-1, pphy2phy).view(num_layers, -1)
logcnt = mlogcnt.view(num_layers, -1).gather(-1, log2mlog)
return pphy2log, pphyrank, logcnt
def rebalance_experts(weight: torch.Tensor, num_replicas: int, num_groups: int,
num_nodes: int, num_gpus: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Entry point for expert-parallelism load balancer.
Parameters:
weight: [layers, num_logical_experts], the load statistics for all logical experts
num_replicas: number of physical experts, must be a multiple of `num_gpus`
num_groups: number of expert groups
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
num_gpus: number of GPUs, must be a multiple of `num_nodes`
Returns:
physical_to_logical_map: [layers, num_replicas], the expert index of each replica
logical_to_physical_map: [layers, num_logical_experts, X], the replica indices for each expert
expert_count: [layers, num_logical_experts], number of physical replicas for each logical expert
"""
num_layers, num_logical_experts = weight.shape
weight = weight.float().cpu()
if num_groups % num_nodes == 0:
# use hierarchical load-balance policy
phy2log, phyrank, logcnt = rebalance_experts_hierarchical(weight, num_replicas,
num_groups, num_nodes, num_gpus)
else:
# use global load-balance policy
phy2log, phyrank, logcnt = rebalance_experts_hierarchical(weight, num_replicas, 1, 1, num_gpus)
maxlogcnt = logcnt.max().item()
log2phy: torch.Tensor = torch.full((num_layers, num_logical_experts, maxlogcnt),
-1, dtype=torch.int64, device=logcnt.device)
log2phy.view(num_layers, -1).scatter_(-1, phy2log * maxlogcnt + phyrank,
torch.arange(num_replicas, dtype=torch.int64, device=log2phy.device).expand(num_layers, -1))
return phy2log, log2phy, logcnt
__all__ = ['rebalance_experts']