|
| 1 | +"""Run an sweep on all layers of GPT2 Small. |
| 2 | +
|
| 3 | +Command: |
| 4 | +
|
| 5 | +```bash |
| 6 | +git clone https://github.com/ai-safety-foundation/sparse_autoencoder.git && cd sparse_autoencoder && |
| 7 | +poetry env use python3.11 && poetry install && |
| 8 | +poetry run python sparse_autoencoder/training_runs/gpt2.py |
| 9 | +``` |
| 10 | +""" |
| 11 | +import os |
| 12 | + |
| 13 | +from sparse_autoencoder import ( |
| 14 | + ActivationResamplerHyperparameters, |
| 15 | + AutoencoderHyperparameters, |
| 16 | + Hyperparameters, |
| 17 | + LossHyperparameters, |
| 18 | + Method, |
| 19 | + OptimizerHyperparameters, |
| 20 | + Parameter, |
| 21 | + PipelineHyperparameters, |
| 22 | + SourceDataHyperparameters, |
| 23 | + SourceModelHyperparameters, |
| 24 | + SweepConfig, |
| 25 | + sweep, |
| 26 | +) |
| 27 | + |
| 28 | + |
| 29 | +os.environ["TOKENIZERS_PARALLELISM"] = "false" |
| 30 | + |
| 31 | + |
| 32 | +def train() -> None: |
| 33 | + """Train.""" |
| 34 | + sweep_config = SweepConfig( |
| 35 | + parameters=Hyperparameters( |
| 36 | + loss=LossHyperparameters( |
| 37 | + l1_coefficient=Parameter(values=[0.0001]), |
| 38 | + ), |
| 39 | + optimizer=OptimizerHyperparameters( |
| 40 | + lr=Parameter(value=0.0001), |
| 41 | + ), |
| 42 | + source_model=SourceModelHyperparameters( |
| 43 | + name=Parameter("gpt2"), |
| 44 | + cache_names=Parameter( |
| 45 | + value=[f"blocks.{layer}.hook_mlp_out" for layer in range(12)] |
| 46 | + ), |
| 47 | + hook_dimension=Parameter(768), |
| 48 | + ), |
| 49 | + source_data=SourceDataHyperparameters( |
| 50 | + dataset_path=Parameter("alancooney/sae-monology-pile-uncopyrighted-tokenizer-gpt2"), |
| 51 | + context_size=Parameter(256), |
| 52 | + pre_tokenized=Parameter(value=True), |
| 53 | + pre_download=Parameter(value=True), |
| 54 | + # Total dataset is c.7bn activations (64 files) |
| 55 | + # C. 1.5TB needed to store all activations |
| 56 | + dataset_files=Parameter( |
| 57 | + [f"data/train-{str(i).zfill(5)}-of-00064.parquet" for i in range(20)] |
| 58 | + ), |
| 59 | + ), |
| 60 | + autoencoder=AutoencoderHyperparameters(expansion_factor=Parameter(values=[32, 64])), |
| 61 | + pipeline=PipelineHyperparameters(), |
| 62 | + activation_resampler=ActivationResamplerHyperparameters( |
| 63 | + threshold_is_dead_portion_fires=Parameter(1e-5), |
| 64 | + ), |
| 65 | + ), |
| 66 | + method=Method.GRID, |
| 67 | + ) |
| 68 | + |
| 69 | + sweep(sweep_config=sweep_config) |
| 70 | + |
| 71 | + |
| 72 | +if __name__ == "__main__": |
| 73 | + train() |
0 commit comments