forked from mosaicml/llm-foundry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_causal_lm.py
297 lines (261 loc) · 14.4 KB
/
hf_causal_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""Implements a Hugging Causal LM wrapped inside a :class:`.ComposerModel`."""
import logging
import os
import warnings
from typing import TYPE_CHECKING, Any, Dict, Mapping
from composer.models.huggingface import peft_installed
from composer.utils import dist
from omegaconf import DictConfig
from transformers import (AutoConfig, AutoModelForCausalLM, PreTrainedModel,
PreTrainedTokenizerBase)
from llmfoundry.metrics import (DEFAULT_CAUSAL_LM_EVAL_METRICS,
DEFAULT_CAUSAL_LM_TRAIN_METRICS)
from llmfoundry.models.hf.hf_fsdp import hf_get_init_device
from llmfoundry.models.hf.model_wrapper import HuggingFaceModelWithFSDP
from llmfoundry.models.layers.attention import is_flash_v2_installed
from llmfoundry.models.utils import init_empty_weights
from llmfoundry.utils.config_utils import pop_config
if TYPE_CHECKING:
from peft import PeftConfig
__all__ = ['ComposerHFCausalLM']
log = logging.getLogger(__name__)
class ComposerHFCausalLM(HuggingFaceModelWithFSDP):
"""Configures a :class:`.HuggingFaceModel` around a Causal LM.
Args:
om_model_config (DictConfig): An OmegaConf DictConfig specifying the configuration options
cfg.pretrained_model_name_or_path (str): The name of or local path to
the HF Causal LM (e.g., `gpt2` to instantiate a GPT2LMHeadModel).
cfg.config_overrides (dict, optional): An optional dictionary of keyword
arguments that override the default configuration associated with
cfg.pretrained_model_name_or_path.
cfg.pretrained (bool): Whether to instantiate the model with pre-trained
weights coming from cfg.pretrained_model_name_or_path. If ``True``,
cfg.config_overrides must be compatible with the pre-trained weights.
cfg.init_device ('cpu' | 'meta'): Which device, 'cpu' or 'meta', to
initialize the model on. Currently, `meta` is only supported when
cfg.pretrained is ``False``. Default: ``'cpu'``.
cfg.peft_config (dict, optional): An optional dictionary of keyword arguments to be
passed to the PeftConfig constructor. If provided, the model will be wrapped in a PeftModel.
cfg.trust_remote_code (bool, optional): Whether to trust remote code when loading from Hugging Face
Hub. Default: ``True``.
cfg.use_auth_token (bool, optional): Whether to use the Hugging Face authentication token when
loading from Hugging Face Hub. Default: ``False``.
cfg.use_train_metrics (bool, optional): Whether to use training metrics. Default: ``True``.
cfg.load_in_8bit (bool, optional): Whether to load the model in 8-bit mode. Default: ``False``.
cfg.init_device (str, optional): Which device to initialize the model on. Default: ``'cpu'``.
cfg.use_flash_attention_2 (bool, optional): Whether to use flash-attention 2. Default: ``False``.
tokenizer (PreTrainedTokenizer): The tokenizer that the model will use.
"""
def __init__(self, om_model_config: DictConfig,
tokenizer: PreTrainedTokenizerBase):
from llmfoundry.utils.builders import build_metric
pretrained_model_name_or_path = om_model_config.pretrained_model_name_or_path
pretrained_lora_id_or_path = om_model_config.get(
'pretrained_lora_id_or_path', None)
if not om_model_config.get(
'trust_remote_code', True
) and pretrained_model_name_or_path.startswith('mosaicml/mpt'):
raise ValueError(
'trust_remote_code must be set to True for MPT models. Without this, the MPT model code will come from the transformers library, '
+
'which is significantly slower and not compatible with the LLM foundry training code, rather than the code release by MosaicML.'
)
# Set up Hugging Face args
trust_remote_code = om_model_config.get('trust_remote_code', True)
use_auth_token = om_model_config.get('use_auth_token', False)
use_flash_attention_2 = om_model_config.get('use_flash_attention_2',
False)
load_in_8bit = om_model_config.get('load_in_8bit', False)
# Set up config args for the model construction and base classes
init_device = om_model_config.get('init_device', 'cpu')
# Resolve "mixed" init device to either "cpu" or "meta"
resolved_init_device = hf_get_init_device(init_device)
requested_attention_implementation = 'flash_attention_2' if use_flash_attention_2 else 'eager'
allow_embedding_resizing = om_model_config.get('allow_embedding_resizing', False)
if use_flash_attention_2 and not is_flash_v2_installed():
raise ValueError(
'use_flash_attention_2 is set to True, but flash-attention 2 is not installed. '
+ 'Please `pip install llm-foundry[gpu]`.')
peft_config_dict = pop_config(om_model_config,
'peft_config',
must_exist=False,
convert=True)
if peft_config_dict is not None and not peft_installed:
raise ValueError(
'PEFT is not installed, but peft_config was passed. Please install LLM Foundry with the peft extra to use peft_config.'
)
use_train_metrics = om_model_config.get('use_train_metrics', True)
train_metric_names = DEFAULT_CAUSAL_LM_TRAIN_METRICS + om_model_config.get(
'additional_train_metrics', [])
train_metrics = [
build_metric(metric, {}) for metric in train_metric_names
] if use_train_metrics else []
eval_metric_names = DEFAULT_CAUSAL_LM_EVAL_METRICS + om_model_config.get(
'additional_eval_metrics', [])
eval_metrics = [
build_metric(metric, {}) for metric in eval_metric_names
]
# Construct the Hugging Face config to use
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
use_auth_token=use_auth_token,
attn_implementation=requested_attention_implementation,
use_cache=
False, # Necessary due to https://github.com/huggingface/transformers/issues/28056
)
# This is not ideal, however Hugging Face's _autoset_attn_implementation function
# forces you to load the model in fp16/bf16 if you want to use flash attention. Rather than loading
# the model and then casting it back to fp32, we are monkeypatching their check.
# https://github.com/huggingface/transformers/issues/28052
def _autoset_attn_implementation_monkeypatch(
cls, # type: ignore
config, # type: ignore
*args, # type: ignore
**kwargs): # type: ignore
config._attn_implementation = requested_attention_implementation
return config
PreTrainedModel._autoset_attn_implementation = classmethod(
_autoset_attn_implementation_monkeypatch)
# set config overrides
for k, v in om_model_config.get('config_overrides', {}).items():
if not hasattr(config, k):
raise ValueError(
f'config does not have attribute "{k}" to override ({k}: {v}).'
)
attr = getattr(config, k)
# attempt to disallow typos in nested configs
if isinstance(attr, Mapping):
extra_keys = [_k for _k in v.keys() if _k not in attr.keys()]
if extra_keys:
raise ValueError(
f'Config dict override got unknown keys. ' +
f'Extra keys: {extra_keys}. ' +
f'Expected (a subset of) keys: {list(attr.keys())}.')
getattr(config, k).update(v)
# necessary case to allow for rope_scaling to be overriden in llama config
elif attr is None and isinstance(v, Mapping):
setattr(config, k, {})
getattr(config, k).update(v)
else:
setattr(config, k, v)
# We need to have all non-zero local ranks be not-pretrained
# Rank 0 will still be pretrained, and distribute the weights appropriately
if dist.get_local_rank() != 0 and init_device == 'mixed':
om_model_config.pretrained = False
# If the HuggingFace model is coming from a local folder, Hugging Face copies the modules into the
# transformers modules cache. On particular systems, this operation seems to cause contention between
# the different processes. To avoid this contention, we first create the model (on meta device) on local rank
# zero. This will set up the transformers model cache and avoid the future contention.
if dist.get_local_rank() == 0 and os.path.isdir(
pretrained_model_name_or_path):
with init_empty_weights(include_buffers=False):
with warnings.catch_warnings():
warnings.simplefilter('ignore', UserWarning)
AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
use_auth_token=use_auth_token,
config=config,
)
dist.barrier()
# initialize the model on the correct device
if resolved_init_device == 'cpu':
if om_model_config.pretrained:
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
use_auth_token=use_auth_token,
load_in_8bit=load_in_8bit,
config=config,
)
else:
model = AutoModelForCausalLM.from_config(
config,
trust_remote_code=trust_remote_code,
)
elif resolved_init_device == 'meta':
if om_model_config.pretrained:
raise ValueError(
'Setting cfg.pretrained=True is not supported when init_device="meta".'
)
with init_empty_weights(include_buffers=False):
model = AutoModelForCausalLM.from_config(
config,
trust_remote_code=trust_remote_code,
)
else:
raise ValueError(
f'init_device="{init_device}" must be either "cpu" or "meta".')
signal_file_path = f'.node_{dist.get_node_rank()}_local_rank0_completed'
if dist.get_local_rank() == 0:
with open(signal_file_path, 'wb') as f:
f.write(b'local_rank0_completed_download')
# Avoid the collective call until the local rank zero has finished trying to download the checkpoint
# so that we don't timeout for large downloads. This syncs all processes on the node
with dist.local_rank_zero_download_and_wait(signal_file_path):
# Then, wait to ensure every node has finished downloading the checkpoint
dist.barrier()
if dist.get_local_rank() == 0:
os.remove(signal_file_path)
# Hugging Face's weight tying does not succeed if the model is inited on meta device
# so we manually apply the weight tying here
if model.config.tie_word_embeddings and resolved_init_device == 'meta':
model.tie_weights()
peft_config = None
if peft_config_dict is not None:
peft_config = self._get_peft_config(peft_config_dict)
if pretrained_lora_id_or_path is not None:
if not peft_installed:
raise ValueError(
'PEFT is not installed, but lora_id_or_path was passed. Please install LLM Foundry with the peft extra to use lora_id_or_path.'
)
from peft import PeftModelForCausalLM
model = PeftModelForCausalLM.from_pretrained(
model, pretrained_lora_id_or_path)
super().__init__(
model=model,
shift_labels=True,
tokenizer=tokenizer,
metrics=train_metrics,
eval_metrics=eval_metrics,
init_device=init_device,
peft_config=peft_config,
allow_embedding_resizing = allow_embedding_resizing
)
self.n_active_params = sum(p.numel() for p in self.parameters())
@staticmethod
def _get_peft_config(peft_config_dict: Dict[str, Any]) -> 'PeftConfig':
if peft_installed:
from peft import LoraConfig
peft_type = peft_config_dict.get('peft_type', '')
if peft_type.upper() != 'LORA':
raise ValueError(
f'Only LORA is supported for peft_type, but got {peft_type}.'
)
task_type = peft_config_dict.get('task_type', '')
if task_type.upper() != 'CAUSAL_LM':
raise ValueError(
f'Only CAUSAL_LM is supported for task_type, but got {task_type}.'
)
return LoraConfig(**peft_config_dict)
else:
raise ValueError(
'PEFT is not installed, but peft_config was passed. Please install LLM Foundry with the peft extra to use peft_config.'
)
def flops_per_batch(self, batch: Mapping) -> int:
# Note: this computation does not take into account padding, and assumes
# that the dataset has been constructed without padding. Additionally, we
# assume the backward pass is approximately 2x the forward pass
bs, msl = batch['input_ids'].shape[0:2]
params = self.n_active_params
if not self.model.config.tie_word_embeddings:
# embedding layers are lookup tables, therefore are not counted in the FLOP computation
params -= self.model.lm_head.weight.numel()
params_flops_per_token = 2 * params
params_flops_per_seq = params_flops_per_token * msl
attn_flops_per_seq = (self.model.config.num_hidden_layers * 2 * 2 *
(self.model.config.hidden_size * (msl**2)))
return (params_flops_per_seq + attn_flops_per_seq) * 3 * bs