-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMNIST.py
102 lines (81 loc) · 2.85 KB
/
MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import torchvision.datasets as datasets
from torchvision import transforms
import numpy as np
from Losses import MultiHuberLoss
name = 'MNIST'
lr = 0.001
epochs = 201
owd_weights = [ 0, 0.001 ]
batch_size_train = 32
batch_size_test = 32
def trainloader(tsp = 100, aug=False):
if aug:
train_transform = transforms.Compose(
[
#transforms.ToPILImage(),
transforms.RandomAffine(degrees=20, translate=(0.1,0.1), scale=(0.9, 1.1)),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=(0.1307,), std=(0.3081,))
])
else:
train_transform = transforms.Compose([
transforms.ToTensor(),
# Normalize a tensor image with mean and standard deviation
transforms.Normalize(mean=(0.1307,), std=(0.3081,))
])
training_set = datasets.MNIST(
'./data-mnist',
train=True,
download=True,
transform=train_transform)
if tsp < 100:
training_set = torch.utils.data.Subset(training_set, range(int(len(training_set)*tsp/100)))
return torch.utils.data.DataLoader(
training_set,
batch_size=batch_size_train,
shuffle=True)
def testloader():
return torch.utils.data.DataLoader(
datasets.MNIST(
'./data-mnist',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
# Normalize a tensor image with mean and standard deviation
transforms.Normalize(mean=(0.1307,), std=(0.3081,))
])),
batch_size=batch_size_test,
shuffle=True)
# LeNet - https://www.kaggle.com/usingtc/lenet-with-pytorch
class LeNet(nn.Module):
def __init__(self, dropout = False):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, (5,5), padding=2)
self.conv2 = nn.Conv2d(6, 16, (5,5))
self.fc1 = nn.Linear(16*5*5, 120)
self.fc1_1 = nn.Linear(120, 84, bias=False)
self.fc2 = nn.Linear(84, 10)
self.dropout = dropout
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2,2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2,2))
x = x.view(-1, 16*5*5)
if self.dropout:
x = F.dropout(x, training=self.training)
x = F.relu(self.fc1(x))
if self.dropout:
x = F.dropout(x, training=self.training)
x = F.relu(self.fc1_1(x))
z = x
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x, z
def model(dropout = False):
return LeNet(dropout)