|
| 1 | +# Analysis Scripts |
| 2 | + |
| 3 | +This directory contains scripts for analysing and aggregating results across multiple experiments. The scripts operate on the outputs from individual experiments and provide higher-level insights into model performance, sampling strategy effectiveness, and cross-experiment comparisons |
| 4 | + |
| 5 | +## Scripts Description |
| 6 | + |
| 7 | +### `aggregate_analysis.py` |
| 8 | +Aggregates results across multiple experiments to determine which sampling strategies perform better than random baseline. Computes percentage improvements and generates LaTeX tables. |
| 9 | + |
| 10 | +**Usage:** |
| 11 | +```bash |
| 12 | +python scripts/analysis/aggregate_analysis.py \ |
| 13 | + outputs/reddit_dataset_12/one-vs-all/football/42_05 \ |
| 14 | + --models distilbert gpt2 ModernBERT \ |
| 15 | + --imbalances 05 01 001 \ |
| 16 | + --strategies accuracy_lightgbm info_gain_lightgbm minority ssepy isolation \ |
| 17 | + --metrics accuracy f1_score precision recall |
| 18 | +``` |
| 19 | + |
| 20 | +**Parameters:** |
| 21 | +- `base_path` (required): Base experiment directory path |
| 22 | +- `--models, -m` (required): List of model names to analyse |
| 23 | +- `--imbalances, -i` (required): Test imbalance levels (e.g., '05', '01', '001') |
| 24 | +- `--strategies, -s` (required): Sampling strategies to evaluate |
| 25 | +- `--metrics, -mt` (optional): Metrics to compare (defaults to all available metrics from random baseline) |
| 26 | + |
| 27 | +**Description:** |
| 28 | +- Iterates over combinations of models, imbalances, and strategies |
| 29 | +- Generates LaTeX tables in `tmp/tables/aggregate_performance/` |
| 30 | +- Computes average improvements across models for each configuration |
| 31 | +- Uses sample sizes: 110, 260, 510, 1000 |
| 32 | + |
| 33 | +### `compare_models.py` |
| 34 | +Compares performance of different models using the same sampling strategy and imbalance level. Creates detailed visualizations comparing model performance. |
| 35 | + |
| 36 | +**Usage:** |
| 37 | +```bash |
| 38 | +python scripts/analysis/compare_models.py \ |
| 39 | + outputs/reddit_dataset_12/one-vs-all/football/42_05 \ |
| 40 | + 05 \ |
| 41 | + accuracy_lightgbm \ |
| 42 | + --models distilbert gpt2 ModernBERT zero-shot |
| 43 | +``` |
| 44 | + |
| 45 | +**Parameters:** |
| 46 | +- `base_path` (required): Base path like 'outputs/reddit_dataset_12/one-vs-all/football/42_05' |
| 47 | +- `test_imbalance` (required): Test imbalance level (e.g., '05', '01', '001') |
| 48 | +- `sampling_method` (required): Sampling method directory name (e.g., 'random', 'distance') |
| 49 | +- `--models` (required): List of model names to compare |
| 50 | + |
| 51 | +**Description:** |
| 52 | +- Generates model comparison plots (raw metrics and MSE) |
| 53 | +- Creates visualizations in organized directory structure at `{base_path}/figures/model_comparison/` |
| 54 | +- Produces both raw performance curves and MSE comparison plots |
| 55 | +- Automatically finds model directories matching the specified pattern |
| 56 | +- Creates separate subdirectories for different plot types (raw/, mse/) |
| 57 | + |
| 58 | +### `compare_sampling_strategies.py` |
| 59 | +Compares different sampling strategies for a given model and imbalance level. Generates comprehensive visualizations comparing strategy effectiveness. |
| 60 | + |
| 61 | +**Usage:** |
| 62 | +```bash |
| 63 | +python scripts/analysis/compare_sampling_strategies.py \ |
| 64 | + outputs/reddit_dataset_12/one-vs-all/football/42_05 \ |
| 65 | + distilbert \ |
| 66 | + --imbalances 05 01 001 \ |
| 67 | + --strategies random distance isolation accuracy_lightgbm info_gain_lightgbm |
| 68 | +``` |
| 69 | + |
| 70 | +**Parameters:** |
| 71 | +- `base_path` (required): Base path like 'outputs/reddit_dataset_12/one-vs-all/football/42_05' |
| 72 | +- `model` (required): Model name (e.g., 'distilbert', 'gpt2', 'ModernBERT') |
| 73 | +- `--imbalances` (required): Test imbalance levels to process (e.g., '05', '01', '001') |
| 74 | +- `--strategies` (required): List of sampling strategies to compare |
| 75 | + |
| 76 | +**Description:** |
| 77 | +- Comparison of sampling strategies |
| 78 | +- Generates three types of plots: raw metrics, MSE comparison, and improvement analysis |
| 79 | +- Creates organized output directory structure at `{base_path}/figures/sampling_comparison/` |
| 80 | +- Processes multiple imbalance levels |
| 81 | + |
| 82 | +### `model_performance.py` |
| 83 | +analyses overall model performance across different configurations. |
| 84 | + |
| 85 | +**Description:** |
| 86 | +- Comprehensive performance metrics analysis |
| 87 | +- Cross-configuration performance comparison |
| 88 | +- Statistical summaries and visualizations |
| 89 | + |
| 90 | +### `model_performance_summary.py` |
| 91 | +Generates summary reports of model performance across all experiments. |
| 92 | + |
| 93 | +**Description:** |
| 94 | +- High-level performance summaries |
| 95 | +- LaTeX table generation for reports |
| 96 | +- Consolidated performance metrics |
| 97 | + |
| 98 | +### `model_transfer_analysis.py` |
| 99 | +analyses how models perform when transferred across different imbalance levels or datasets. |
| 100 | + |
| 101 | +**Description:** |
| 102 | +- Label transfer performance analysis |
| 103 | +- Produces a number of LaTeX tables |
| 104 | + |
| 105 | +### `bootstrapping_rmse.py` |
| 106 | +Performs bootstrap resampling analysis to assess confidence intervals for RMSE and other metrics. Provides robust statistical analysis of sampling strategy performance. |
| 107 | + |
| 108 | +**Usage:** |
| 109 | +```bash |
| 110 | +python scripts/analysis/bootstrapping_rmse.py \ |
| 111 | + outputs/reddit_dataset_12/one-vs-all/football/42_05 \ |
| 112 | + --models distilbert gpt2 ModernBERT zero-shot \ |
| 113 | + --imbalances 05 01 001 \ |
| 114 | + --sampling-methods random ssepy info_gain_lightgbm accuracy_lightgbm minority isolation \ |
| 115 | + --verbose \ |
| 116 | + --selected-steps 10 100 500 |
| 117 | +``` |
| 118 | + |
| 119 | +**Parameters:** |
| 120 | +- `base_path` (required): Base experiment directory path |
| 121 | +- `--models` (optional): Model names to include (default: distilbert, ModernBERT, gpt2, zero-shot) |
| 122 | +- `--imbalances` (optional): Test imbalance levels (default: 05, 01, 001) |
| 123 | +- `--sampling-methods` (optional): Sampling strategies to evaluate (default: random, ssepy, info_gain_lightgbm, accuracy_lightgbm, minority, isolation) |
| 124 | +- `--verbose, -v` (optional): Print detailed output and tables |
| 125 | +- `--selected-steps` (optional): Only include specific evaluation steps (e.g., 10 100 500) |
| 126 | + |
| 127 | +**Description:** |
| 128 | +- Bootstrap confidence interval estimation with configurable sample sizes |
| 129 | +- Statistical significance testing across all metrics |
| 130 | +- Error estimation using bootstrap resampling |
| 131 | +- Generates grouped analysis tables and JSON results |
| 132 | +- Can filter to specific evaluation steps for focused analysis |
| 133 | +- Creates tables in multiple formats: raw RMSE, differences from random, and grouped metrics |
| 134 | +- Outputs saved to `{base_path}/tables/bootstrap_rmse/` with subdirectories for different analysis types |
| 135 | + |
| 136 | +### `bias_correction_impact.py` |
| 137 | +analyses the impact of bias correction techniques on sampling strategy performance. |
| 138 | + |
| 139 | +**Description:** |
| 140 | +- Before/after bias correction comparisons |
| 141 | +- Impact quantification across strategies |
| 142 | + |
| 143 | +### `aggregate_class_distribution.py` |
| 144 | +Analyses class distribution patterns across different sampling strategies and datasets from metrics files. |
| 145 | + |
| 146 | +**Usage:** |
| 147 | +```bash |
| 148 | +python scripts/analysis/aggregate_class_distribution.py \ |
| 149 | + outputs/reddit_dataset_12/one-vs-all/football/42_05 \ |
| 150 | + --imbalances 01 05 001 \ |
| 151 | + --models distilbert ModernBERT gpt2 zero-shot \ |
| 152 | + --sampling-methods random ssepy minority info_gain_lightgbm accuracy_lightgbm isolation \ |
| 153 | + --sample-sizes 10 100 1000 \ |
| 154 | + --max-runs 5 |
| 155 | +``` |
| 156 | + |
| 157 | +**Parameters:** |
| 158 | +- `base_path` (required): Base experiment directory path |
| 159 | +- `--imbalances` (required): Imbalance levels (e.g., '01', '05') |
| 160 | +- `--models` (optional): Models to analyse (default: distilbert, ModernBERT, gpt2, zero-shot) |
| 161 | +- `--sampling-methods` (optional): Sampling methods to analyse (default: random, ssepy, minority, info_gain_lightgbm, accuracy_lightgbm, isolation) |
| 162 | +- `--sample-sizes` (optional): Specific sample sizes to analyse (e.g., 10 100 1000) |
| 163 | +- `--max-runs` (optional): Maximum number of runs per sampling method (None = use all available) |
| 164 | + |
| 165 | +**Description:** |
| 166 | +- Class imbalance analysis across different sample sizes |
| 167 | +- Sampling strategy bias assessment with statistical summaries |
| 168 | +- Distribution visualization and percentage tables |
| 169 | +- Outputs summary CSV files and LaTeX tables to `{base_path}/tables/class_distributions/` |
| 170 | +- Creates visualizations in `{base_path}/figures/class_distributions/` |
| 171 | + |
| 172 | +### `aggregate_replay.py` |
| 173 | +Aggregates replay experiments across multiple models and imbalance levels. This script has hardcoded configuration and analyses label transfer performance. |
| 174 | + |
| 175 | +**Usage:** |
| 176 | +```bash |
| 177 | +python scripts/analysis/aggregate_replay.py |
| 178 | +``` |
| 179 | + |
| 180 | +**Parameters:** |
| 181 | +- No command-line arguments (uses hardcoded configuration) |
| 182 | +- Hardcoded paths: `outputs/reddit_dataset_12/one-vs-all/football/42_05` |
| 183 | +- Hardcoded models: distilbert, gpt2, ModernBERT, zero-shot |
| 184 | +- Hardcoded imbalances: 05, 01, 001 |
| 185 | +- Hardcoded samplers: accuracy_lightgbm, info_gain_lightgbm, minority, ssepy |
| 186 | + |
| 187 | +**Description:** |
| 188 | +- Replay experiment aggregation with bootstrap RMSE analysis |
| 189 | +- Cross-model strategy consistency analysis |
| 190 | +- Performance stability assessment across configurations |
| 191 | +- Generates tables and figures in `outputs/.../tables/aggregate_replay/` and `outputs/.../figures/aggregate_replay/` |
| 192 | + |
| 193 | +### `analyse_replay.py` |
| 194 | +Analyses individual replay transfer results for a specific source model. |
| 195 | + |
| 196 | +**Usage:** |
| 197 | +```bash |
| 198 | +python scripts/analysis/analyse_replay.py \ |
| 199 | + /path/to/source/model/results/directory |
| 200 | +``` |
| 201 | + |
| 202 | +**Parameters:** |
| 203 | +- `source_model_dir` (required): Path to the source model's results directory |
| 204 | + |
| 205 | +**Description:** |
| 206 | +- Individual replay experiment analysis |
| 207 | +- Generates plots comparing replay results across different target configurations |
| 208 | +- Uses predefined configs: distilbert_default, gpt2_default, ModernBERT_short, zero-shot_default |
| 209 | + |
| 210 | +## Data Requirements |
| 211 | + |
| 212 | +These scripts expect data in the following structure: |
| 213 | +``` |
| 214 | +outputs/ |
| 215 | +├── reddit_dataset_12/ |
| 216 | +│ └── one-vs-all/ |
| 217 | +│ └── football/ |
| 218 | +│ └── 42_05/ |
| 219 | +│ ├── distilbert/ |
| 220 | +│ │ └── default/ |
| 221 | +│ │ └── eval_outputs/ |
| 222 | +│ │ ├── 05/ |
| 223 | +│ │ ├── 01/ |
| 224 | +│ │ └── 001/ |
| 225 | +│ │ ├── random/ |
| 226 | +│ │ ├── accuracy_lightgbm/ |
| 227 | +│ │ └── ... |
| 228 | +│ ├── gpt2/ |
| 229 | +│ └── ModernBERT/ |
| 230 | +``` |
| 231 | + |
| 232 | +Each strategy directory should contain: |
| 233 | +- `stats_full.json`: Complete statistics for all samples |
| 234 | +- `sample_*.json`: Sample selection files for different seeds |
| 235 | +- `metrics_*.json`: Computed metrics for different sample sizes |
0 commit comments